The mammalian retina contains at least two guanylyl cyclases (GC1 and GC2) and two guanylyl cyclase-activating proteins (GCAP1 and GCAP2). Here we present evidence of the presence of a new photoreceptor-specific GCAP, termed GCAP3, which is closely related to GCAP1. The sequence similarity of GCAP3 with GCAP1 and GCAP2 is 57 and 49%, respectively. Recombinant GCAP3 and GCAP2 stimulate GC1 and GC2 in low ] free is elevated, unlike GCAP1, which only stimulates GC1. GCAP3 is encoded by a distinct gene present in other mammalian species but could not be detected by genomic Southern blotting in rodents, amphibians, and lower vertebrates. The intron/exon arrangement of the GCAP3 gene is identical to that of the other GCAP genes. While the GCAP1 and GCAP2 genes are arranged in a tail-to-tail array on chromosome 6p in human, the GCAP3 gene is located on 3q13.1, suggesting an ancestral gene duplication/translocation event. The identification of multiple Ca 2؉ -binding proteins that interact with GC is suggestive of complex regulatory mechanisms for photoreceptor GC.
A molecular-genetic approach towards isolating mammalian polyamine-transport genes and their encoded proteins was devised involving the production of Chinese-hamster ovary (CHO) cells expressing a human polyamine-transport protein. CHO cells and a polyamine-transport-deficient CHO mutant cell line (CHOMG) were equally sensitive to the antiproliferative effects of alpha-difluoromethylornithine (DFMO), which blocked endogenous polyamine synthesis. Exposure to exogenous polyamines increased intracellular polyamine levels and reversed this DFMO-induced cytostasis in the CHO cells, but not in the CHOMG cells. CHOMG cells were therefore transfected with human DNA (isolated from HT-29 colon carcinoma cells) and cells expressing the human polyamine-transport system were identified by the ability of these cells to grow in a medium containing DFMO and polyamines. A number of different positive clones were identified and shown to have the capacity for polyamine uptake and an increased sensitivity to the toxic effects of the polyamine analogue methylglyoxal bis(guanylhydrazone). Differences in these properties between the clones are consistent with a multiplicity of polyamine-transport systems. Some clones also showed a change in growth characteristics, which may indicate a relationship between genes involved in the polyamine-transport system and in cell proliferation.
The effects of the potent spermine synthase inhibitor S-adenosyl-1,12-diamino-3-thio-9-azadodecane (AdoDatad) on polyamine biosynthesis have been studied in transformed mouse fibroblasts (SV 3T3 cells) and in mouse leukemia cells (L1210). A dose-dependent decrease in intracellular spermine concentration was observed in both cell lines when grown in the presence of the inhibitor. A major difference in the effects seen in these two cell lines was the cytotoxicity observed in L1210 cells exposed to the inhibitor, which contrasted with little or no effects on growth of SV 3T3 cells treated similarly. Oxidative metabolism of the drug in L1210 cells was suggested by the fact that addition of aminoguanidine, an amine oxidase inhibitor, to the cell cultures ablated the cytotoxic effects of the inhibitor. Complete analysis of intracellular polyamines was carried out, together with analysis of S-adenosylmethionine, decarboxylated S-adenosylmethionine, and the inhibitor. These analyses revealed that, although the inhibitor had a dramatic effect on spermine biosynthesis in the cells studied, a compensatory increase in spermidine biosynthesis was observed. This resulted in no change in total polyamine concentrations in cells treated with inhibitors of either spermine synthase or spermidine synthase (Pegg et al., 1982) alone or in combination. In all cases, the concentration of the aminopropyl donor decarboxylated S-adenosylmethionine increased dramatically, thus allowing for the observed maintenance of total polyamine levels even in the presence of either one or both potent inhibitors of the aminopropyltransferases. Oxidative metabolism of the inhibitor complicates the interpretation of experiments carried out in the absence of amine oxidase inhibitors such as aminoguanidine.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.