We study operator complexity on various time scales with emphasis on those much larger than the scrambling period. We use, for systems with a large but finite number of degrees of freedom, the notion of K-complexity employed in [1] for infinite systems. We present evidence that K-complexity of ETH operators has indeed the character associated with the bulk time evolution of extremal volumes and actions. Namely, after a period of exponential growth during the scrambling period the K-complexity increases only linearly with time for exponentially long times in terms of the entropy, and it eventually saturates at a constant value also exponential in terms of the entropy. This constant value depends on the Hamiltonian and the operator but not on any extrinsic tolerance parameter. Thus K-complexity deserves to be an entry in the AdS/CFT dictionary. Invoking a concept of K-entropy and some numerical examples we also discuss the extent to which the long period of linear complexity growth entails an efficient randomization of operators.
Abstract:We consider conformal blocks of two heavy operators and an arbitrary number of light operators in a (1+1)-d CFT with large central charge. Using the monodromy method, these higher-point conformal blocks are shown to factorize into products of 4-point conformal blocks in the heavy-light limit for a class of OPE channels. This result is reproduced by considering suitable worldline configurations in the bulk conical defect geometry. We apply the CFT results to calculate the entanglement entropy of an arbitrary number of disjoint intervals for heavy states. The corresponding holographic entanglement entropy calculated via the minimal area prescription precisely matches these results from CFT. Along the way, we briefly illustrate the relation of these conformal blocks to Riemann surfaces and their associated moduli space.
We consider time-dependent entanglement entropy (EE) for a 1+1 dimensional CFT in the presence of angular momentum and U(1) charge. The EE saturates, irrespective of the initial state, to the grand canonical entropy after a time large compared with the length of the entangling interval. We reproduce the CFT results from an AdS dual consisting of a spinning BTZ black hole and a flat U(1) connection. The apparent discrepancy that the holographic EE does not a priori depend on the U(1) charge while the CFT EE does, is resolved by the charge-dependent shift between the bulk and boundary stress tensors. We show that for small entangling intervals, the entanglement entropy obeys the first law of thermodynamics, as conjectured recently. The saturation of the EE in the field theory is shown to follow from a version of quantum ergodicity; the derivation indicates that it should hold for conformal as well as massive theories in any number of dimensions.Comment: 22 pages, 4 figures; (v2) many comments added for better clarity; typos fixed; references adde
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.