The overuse of antibiotics has led to emergence of antimicrobial resistance, and as a result, antibacterial peptides (ABPs) are receiving significant attention as an alternative. Identification of effective ABPs in lab from natural sources is a cost-intensive and time-consuming process. Therefore, there is a need for the development of in silico models, which can identify novel ABPs in protein sequences for chemical synthesis and testing. In this study, we propose a deep learning classifier named Deep-ABPpred that can identify ABPs in protein sequences. We developed Deep-ABPpred using bidirectional long short-term memory algorithm with amino acid level features from word2vec. The results show that Deep-ABPpred outperforms other state-of-the-art ABP classifiers on both test and independent datasets. Our proposed model achieved the precision of approximately 97 and 94% on test dataset and independent dataset, respectively. The high precision suggests applicability of Deep-ABPpred in proposing novel ABPs for synthesis and experimentation. By utilizing Deep-ABPpred, we identified ABPs in the tail protein sequences of Streptococcus bacteriophages, chemically synthesized identified peptides in lab and tested their activity in vitro. These ABPs showed potent antibacterial activity against selected Gram-positive and Gram-negative bacteria, which confirms the capability of Deep-ABPpred in identifying novel ABPs in protein sequences. Based on the proposed approach, an online prediction server is also developed, which is freely accessible at https://abppred.anvil.app/. This web server takes the protein sequence as input and provides ABPs with high probability (>0.95) as output.
The Devonian Duvernay Formation in northwest central Alberta, Canada, has become a hot play in the past few years due to its richness in liquid and gaseous hydrocarbon resources. The oil and gas generation in this shale formation made it the source rock for many oil and gas fields in its vicinity. We attempt to showcase the characterization of Duvernay Formation using 3D multicomponent seismic data and integrating it with the available well log and other relevant data. This has been done by deriving rock-physics parameters (Young’s modulus and Poisson’s ratio) through deterministic simultaneous and joint impedance inversion, with appropriate quantitative interpretation. In particular, we determine the brittleness of the Duvernay interval, which helps us determine the sweet spots therein. The scope of this characterization exercise was extended to explore the induced seismicity observed in the area (i.e., earthquakes of magnitude [Formula: see text]) that is perceived to be associated with hydraulic fracture stimulation of the Duvernay. This has been a cause of media coverage lately. We attempt to integrate our results with the induced seismicity data available in the public domain and elaborate on our learning experience gained so far.
With advancements in genomics, there has been substantial reduction in the cost and time of genome sequencing and has resulted in lot of data in genome databases. Antimicrobial host defense proteins provide protection against invading microbes. But confirming the antimicrobial function of host proteins by wet-lab experiments is expensive and time consuming. Therefore, there is a need to develop an in silico tool to identify the antimicrobial function of proteins. In the current study, we developed a model AniAMPpred by considering all the available antimicrobial peptides (AMPs) of length $\in $[10 200] from the animal kingdom. The model utilizes a support vector machine algorithm with deep learning-based features and identifies probable antimicrobial proteins (PAPs) in the genome of animals. The results show that our proposed model outperforms other state-of-the-art classifiers, has very high confidence in its predictions, is not biased and can classify both AMPs and non-AMPs for a diverse peptide length with high accuracy. By utilizing AniAMPpred, we identified 436 PAPs in the genome of Helobdella robusta. To further confirm the functional activity of PAPs, we performed BLAST analysis against known AMPs. On detailed analysis of five selected PAPs, we could observe their similarity with antimicrobial proteins of several animal species. Thus, our proposed model can help the researchers identify PAPs in the genome of animals and provide insight into the functional identity of different proteins. An online prediction server is also developed based on the proposed approach, which is freely accessible at https://aniamppred.anvil.app/.
Fungal infections or mycosis cause a wide range of diseases in humans and animals. The incidences of community acquired; nosocomial fungal infections have increased dramatically after the emergence of COVID-19 pandemic. The increase in number of patients with immunodeficiency / immunosuppression related diseases, resistance to existing antifungal compounds and availability of limited therapeutic options has triggered the search for alternative antifungal molecules. In this direction, antifungal peptides (AFPs) have received a lot of interest as an alternative to currently available antifungal drugs. Although the AFPs are produced by diverse population of living organisms, identifying effective AFPs from natural sources is time-consuming and expensive. Therefore, there is a need to develop a robust in silico model capable of identifying novel AFPs in protein sequences. In this paper, we propose Deep-AFPpred, a deep learning classifier that can identify AFPs in protein sequences. We developed Deep-AFPpred using the concept of transfer learning with 1DCNN-BiLSTM deep learning algorithm. The findings reveal that Deep-AFPpred beats other state-of-the-art AFP classifiers by a wide margin and achieved approximately 96% and 94% precision on validation and test data, respectively. Based on the proposed approach, an online prediction server is created and made publicly available at https://afppred.anvil.app/. Using this server, one can identify novel AFPs in protein sequences and the results are provided as a report that includes predicted peptides, their physicochemical properties and motifs. By utilizing this model, we identified AFPs in different proteins, which can be chemically synthesized in lab and experimentally validated for their antifungal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.