The use of lysosome-targeted liposomes may significantly improve a delivery of therapeutic enzymes into lysosomes for the treatment of lysosome-associated diseases. The aim of this research was to achieve a specific intracellular targeting of lysosomes, by using liposomes modified with the lysosomotropic octadecyl-rhodamine B (RhB) and loaded with a model compound, fluorescein isothiocyanate (FITC)–dextran (FD). Plain and RhB-modified liposomes were prepared by hydration of lipid films and loaded with FD or with 5-dodecanoylaminofluorescein di-β-D-galactopyranoside (C12FDG), a specific substrate for the intralysosomal β-galactosidase. The delivery of these liposomes and their content to lysosomes in HeLa cells was investigated by confocal microscopy, flow cytometry, and subcellular fractionation. Confocal microscopy demonstrated that RhB-liposomes co-localize well with the specific lysosomal markers, unlike plain liposomes. The comparison of the FITC fluorescence of the lysosomes isolated by subcellular fractionation also showed that the efficiency of FD delivery into lysosomes by RhB-modified liposomes was significantly higher compared with plain liposomes. These results were additionally confirmed by the flow cytometry of the intact cells treated with C12FDG-loaded liposomes that also demonstrated increased lysosomal targeting by RhB-modified liposomes. The modification of the liposomal surface with a lysosomotropic ligand, such as octadecyl-RhB, can significantly increase the delivery of liposomal loads to lysosomes.
The use of lysosome-targeted liposomes may significantly improve the delivery of therapeutic enzymes and chaperones into lysosomes for the treatment of lysosomal storage disorders. The aim of this research was to synthesize new potentially lysosomotropic ligands on a base of Neutral Red and rhodamine B and to study their ability to enhance specific lysosomal delivery of surface-modified liposomes loaded with a model compound, fluorescein isothiocyanate-dextran (FD). The delivery of these liposomes and their content to lysosomes in HeLa cells was investigated by confocal immunofluorescent microscopy, subcellular fractionation and flow cytometry. Confocal microscopy demonstrated that liposomes modified with derivatives of rhodamine B provide good rate of co-localization well the specific lysosomal markers. The comparison of fluorescence of FD in lysosomes isolated by subcellular fractionation also showed that the efficiency of lysosomal delivery of liposomal load by liposomes modified with some of synthesized ligands was significantly higher compared with plain liposomes. These results were additionally confirmed by the flow cytometry of the intact cells treated with liposomes loaded with with 5-dodecanoylaminofluorescein di-β-D-galactopyranoside, a specific substrate for the intralysosomal β-galactosidase, using a number of cell lines, including macrophages with induced phenotype of lysosomal enzyme deficiency; two of the synthesized ligands – rhodamine B DSPE-PEG2k-amide and 6-(3-(DSPE-PEG2k)-thioureido) rhodamine B – demonstrated enhanced lysosomal delivery, in some cases, higher than that for commercially available rhodamine B octadecyl ester, with the best results (the enhancement of the lysosomal delivery up to 75% greater in comparison to plain liposomes) shown for the cells with induced lysosomal enzyme deficiency phenotype. Use of liposomes modified with rhodamine B derivatives may be advantageous for the development of drug delivery systems for the treatment of lysosome-associated disorders.
Aim We hypothesized that liposomes modified with lysosomotropic octadecyl-rhodamine B (Rh) and loaded with therapeutic glucocerebroside velaglucerase alfa (VPRIV™) will improve lysosomal delivery of the enzyme into Gaucher’s cells. Materials & methods Confocal microscopy and flow cytometry were used to evaluate the ability of Rh-modified liposomes loaded with VPRIV to improve the lysosomal targeting in monocyte-derived macrophages and Gaucher’s fibroblasts. Results Confocal microscopy demonstrated that Rh-modified liposomes localized primarily in the lysosomes. As confirmed by flow cytometry using specific substrate 5-(pentafluorobenzoylamino)fluorescein diglucoside, intralysosomal accumulation of VPRIV in the cells treated with Rh-modified liposomes was significantly increased (up to 68%) relative to the cells treated with plain liposomes or free VPRIV. Conclusion Rh-modified lysosomotropic liposomes can improve lysosomal accumulation of liposomal enzymes both in nonphagocytic Gaucher’s fibroblasts and phagocytic monocyte-derived macrophages.
A sensitive and simple HPLC method was developed for the determination of a novel compound, a potential anti-cancer drug, N-(2-hydroxy-5-nitrophenylcarbamothioyl)-3,5-dimethylbenzamide (DM-PIT-1), a member of the new structural class of non-phosphoinositide small molecule antagonist of phosphatidylinositol-3,4,5-trisphosphate–pleckstrin-homology domain interactions, in mouse plasma and tumor tissue homogenates. The chromatographic separation of DM-PIT-1 was achieved on C18 column using isocratic elution with acetonitrile-water (70:30) containing 0.1% formic acid (v/v). DM-PIT-1 was detected by UV absorbance at 320 nm and confirmed by LC-MS. The extraction of the DM-PIT-1 from the plasma and tumor tissue with methylene chloride resulted in its high recovery (70–80%). HPLC calibration curves for DM-PIT-1 based on the extracts from the mouse plasma and tumor tissue samples were linear over a broad concentration range of 0.25–20 μg/ml/g, with intra/inter-day accuracy of 95% and the precision of variation below 10%. The limits of detection and quantification were 0.1 ng and 0.2 ng respectively. The described method was successfully applied to study the pharmacokinetics of the DM-PIT-1 following the parenteral injections of DM-PIT-1 entrapped in 1,2-Disteratoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene-glycol)-2000] (PEG-PE) micelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.