Community detection algorithms (CDAs) are aiming to group nodes based on their connections and play an essential role in the complex system analysis. However, for privacy reasons, we may want to prevent communities or a group of nodes in the complex industrial network from being discovered in some instances, leading to the topics on community deception. In this paper, we introduce and formalize two intelligent community deception methods to conceal the nodes from various CDAs. We used node‐based matrices, persistence and safeness scores, to formalize the optimization problems to confound the CDAs. The persistence score is used to destabilize the constant communities in the network while the safeness score is used to assess the level of hiding of a node from CDAs. The objective functions aim to minimize the persistence score and maximize the safeness score of the nodes in the network. From the simulation results, it can be analyzed that the proposed strategies are intelligently concealing the community information in the complex industrial system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.