Neurotrophins are a unique family of polypeptide growth factors that influence the proliferation, differentiation, survival and death of neuronal and non-neuronal cells. They are essential for the health and well-being of the nervous system. NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), NT-3 (neurotrophin-3) and NT-4 (neurotrophin-4) also mediate additional higher-order activities, such as learning, memory and behaviour, in addition to their established functions for cell survival. The effects of neurotrophins depend upon their levels of availability, their affinity of binding to transmembrane receptors and the downstream signalling cascades that are stimulated after receptor activation. Alterations in neurotrophin levels have been implicated in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, as well as psychiatric disorders, including depression and substance abuse. Difficulties in administering trophic factors have led to the consideration of using small molecules, such as GPCR (G-protein-coupled receptor) ligands, which can participate in transactivation events. In this review, we consider the signalling pathways activated by neurotrophins in both health and disease states.
Specificity of neurotrophin factor signaling is dictated through the action of Trk receptor tyrosine kinases. Once activated, Trk receptors are internalized and targeted for degradation. However, the mechanisms implicated in this process are incompletely understood. Here we report that the Trk receptors are multimonoubiquitinated in response to neurotrophins. We have identified an E3 ubiquitin ligase, Nedd4-2, that associates with the TrkA receptor and is phosphorylated upon NGF binding. The binding of Nedd4-2 to TrkA through a PPXY motif leads to the ubiquitination and downregulation of TrkA. Activated TrkA receptor levels and the survival of NGF-dependent sensory neurons, but not BDNF-dependent sensory neurons, are directly influenced by Nedd4-2 expression. Unexpectedly, Nedd4-2 does not bind or ubiquitinate related TrkB receptors, due to the lack of a consensus PPXY motif. Our results indicate that Trk neurotrophin receptors are differentially regulated by ubiquitination to modulate the survival of neurons.
Neurogenesis, the division, migration, and differentiation of new neurons, occurs throughout life. Brain derived neurotrophic factor (BDNF) has been identified as a potential signaling molecule regulating neurogenesis in the subventricular zone (SVZ), but its functional consequences in vivo have not been well defined. We report marked and unexpected deficits in survival but not proliferation of newly born cells of adult knock-in mice containing a variant form of BDNF [a valine (Val) to methionine (Met) substitution at position 66 in the prodomain of BDNF (Val66Met)], a genetic mutation shown to lead to a selective impairment in activity-dependent BDNF secretion. Utilizing knock-out mouse lines, we identified BDNF and tyrosine receptor kinase B (TrkB) as the critical molecules for the observed impairments in neurogenesis, with p75 knock-out mice showing no effect on cell proliferation or survival. We then localized the activated form of TrkB to a discrete population of cells, type A migrating neuroblasts, and demonstrate a decrease in TrkB phosphorylation in the SVZ of Val66Met mutant mice. With these findings, we identify TrkB signaling, potentially through activity dependent release of BDNF, as a critical step in the survival of migrating neuroblasts. Utilizing a behavioral task shown to be sensitive to disruptions in olfactory bulb neurogenesis, we identified specific impairments in spontaneous olfactory discrimination, but not general olfactory sensitivity or habituation to olfactory stimuli in BDNF mutant mice. Through these observations, we have identified novel links between genetic variant BDNF and adult neurogenesis in vivo, which may contribute to significant impairments in olfactory function.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide that acts through G proteincoupled receptors, exerts neuroprotective effects upon many neuronal populations. However, the intracellular signaling mechanisms that account for PACAP's trophic effects are not well characterized. Here we have tested the possibility that PACAP uses neurotrophin signaling pathways. We have found that PACAP treatment resulted in an increase in TrkA tyrosine kinase activity in PC12 cells and TrkB activity in hippocampal neurons. The activation of TrkA receptors by PACAP required at least 1 h of treatment and did not involve binding to nerve growth factor. Moreover, PACAP induced an increase in activated Akt through a Trk-dependent mechanism that resulted in increased cell survival after trophic factor withdrawal. The increases in Trk and Akt were blocked by K252a, an inhibitor of Trk receptor activity. In addition, transactivation of TrkA receptors by PACAP could be inhibited with PP1, an inhibitor of Src family kinases or BAPTA/AM, (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester), an intracellular calcium chelator. Therefore, PACAP can exert trophic effects through a mechanism involving Trk receptors and utilization of tyrosine kinase signaling. This ability may explain several neuroprotective actions of PACAP upon neuronal populations after injury, nerve lesion, or neurotrophin deprivation.Neurotrophic effects are generally associated with the action of polypeptide growth factors, such as the NGF 1 neurotrophin, ciliary neurotrophic factor (CNTF), and glial-derived neurotrophic factor families. Each represents small families of proteins that are essential for the development of the vertebrate nervous system. The effects of these factors on cell survival, differentiation, and cell death events depend upon binding to transmembrane receptors and stimulation of downstream signaling cascades characterized by increased protein tyrosine phosphorylation. Neurotrophins utilize Trk receptor tyrosine kinases, and glial-derived neurotrophic factor family members signal through the c-Ret receptor tyrosine kinase, whereas CNTF utilizes JAK tyrosine kinase activity linked to the CNTF receptor complex (1).It has become increasingly apparent that many other secreted proteins are also capable of providing neuroprotective or neurotrophic actions. The pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to a family of peptides, including secretin, glucagon, and vasoactive intestinal peptide (VIP) (2, 3). PACAP exists in two active forms of 38 (PACAP38) and 27 amino acids (PACAP27). Although PACAP was originally isolated from the hypothalamus, it is distributed throughout the central nervous system, including the hippocampus, olfactory bulb, and cerebral cortex (4 -9).The biological effects of PACAP are mediated by seven-transmembrane-spanning receptors. Two G protein-coupled receptors exist for PACAP. The type 1 PACAP receptor, PAC1, displays high specificity for PACAP (10), whereas type I...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.