Novel coronavirus SARS-CoV-2 has infected millions of people with thousands of mortalities globally. The main protease (Mpro) is vital in processing replicase polyproteins. Both the CoV’s Mpro shares 97% identity, with 12 mutations, but none are present in the active site. Although many therapeutics and vaccines are available to combat SARS-CoV-2, these treatments may not be practical due to their high mutational rate. On the other hand, Mpro has a high degree of conservation throughout variants, making Mpro a stout drug target. Here, we report a detailed comparison of both the monomeric Mpro and the biologically active dimeric Mpro using MD simulation to understand the impact of the 12 divergent residues (T35V, A46S, S65N, L86V, R88K, S94A, H134F, K180N, L202V, A267S, T285A and I286L) on the molecular microenvironment and the interaction between crucial residues. The present study concluded that the change in the microenvironment of residues at the entrance (T25, T26, M49 and Q189), near the catalytic site (F140, H163, H164, M165 and H172) and in the substrate-binding site (V35, N65, K88 and N180) is due to 12 mutations in the SARS-CoV-2 Mpro. Furthermore, the involvement of F140, E166 and H172 residues in dimerization stabilizes the Mpro dimer, which should be considered. We anticipate that networks and microenvironment changes identified here might guide repurposing attempts and optimization of new Mpro inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02089-6.
Millions of lives have been infected since the SARS-CoV-2 outbreak in 2019. The high human-to-human transmission rate has warranted a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging concern variants is B1.1.529 (Omicron), which carries ~ 30 mutations in the Spike protein (S) of SARS-CoV-2 and is predicted to evade antibody recognition even from vaccinated people. We used a structure-based approach and an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity was used for designing and predicting vaccine construct features and structure models. In addition, the MESV construct In silico cloning in the pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. Therefore, the proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02027-6.
A recent fatal outbreak of novel coronavirus SARS-CoV-2, identified preliminary as a causative agent for series of unusual pneumonia cases in Wuhan city, China has infected more than 20 million individuals with more than 4 million mortalities. Since, the infection crossed geographical barriers, the WHO permanently named the causing disease as COVID-2019 by declaring it a pandemic situation. SARS-CoV-2 is an enveloped single-stranded RNA virus causing a wide range of pathological conditions from common cold symptoms to pneumonia and fatal severe respiratory syndrome. Genome sequencing of SARS-CoV-2 has revealed 96% identity to the bat coronavirus and 79.6% sequence identity to the previous SARS-CoV. The main protease (known as 3C-like proteinase/ Mpro) plays a vital role during the infection with the processing of replicase polyprotein thus offering an attractive target for therapeutic interventions. SARS-CoV and SARS-CoV-2 Mpro shares 97% sequence identity, with 12 variable residues but none of them are present in the catalytic and substrate binding site. With the high level of sequence and structural similarity and absence of any drug/vaccine against SARS-CoV-2, drug repurposing against Mpro is an effective strategy to combat COVID-19. Here, we report a detailed comparison of SARS-CoV-2 Mpro with SARS-CoV Mpro using molecular dynamics simulations to assess the impact of 12 divergent residues on the molecular microenvironment of Mpro. Structural comparison and analysis are made on how these variable residues affect the intra-molecular interactions between key residues in the monomer and biologically active dimer form of Mpro. The present MD simulations study concluded the change in microenvironment of active-site residues at the entrance (T25, T26, M49 and Q189), near the catalytic region (F140, H163, H164, M165 and H172) and other residues in substrate binding site (V35T, N65S, K88R and N180K) due to 12 mutation incorporated in the SARS-CoV-2 Mpro. It is also evident that SARS-CoV-2 dimer is more stable and less flexible state compared to monomer which may be due to these variable residues, mainly F140, E166 and H172 which are involved in dimerization. This also warrants a need for inhibitor design considering the more stable dimer form. The mutation accumulated in SARS-CoV-2 Mpro indirectly reconfigures the key molecular networks around the active site conferring a potential change in SARS-CoV-2, thus posing a challenge in drug repurposing SARS drugs for COVID-19. The new networks and changes in the microenvironment identified by our work might guide attempts needed for repurposing and identification of new Mpro inhibitors.
Since the SARS-CoV-2 outbreak in 2019, millions of people have been infected with the virus, and due to its high human-to-human transmission rate, there is a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging variants of concern is B1.1.529 (Omicron), which carries ~30 mutations in the Spike protein of SARS-CoV-2 is predicted to evade antibodies recognition even from vaccinated people. We used a structure-based approach along with an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity were used for designing and predicting vaccine construct features and structure models. The MESV construct In-silico cloning in pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. The proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.