Sleep is a crucial part of the daily activity patterns of mammals. However, in marine species that spend months or entire lifetimes at sea, the location, timing, and duration of sleep may be constrained. To understand how marine mammals satisfy their daily sleep requirements while at sea, we monitored electroencephalographic activity in wild northern elephant seals ( Mirounga angustirostris ) diving in Monterey Bay, California. Brain-wave patterns showed that seals took short (less than 20 minutes) naps while diving (maximum depth 377 meters; 104 sleeping dives). Linking these patterns to accelerometry and the time-depth profiles of 334 free-ranging seals (514,406 sleeping dives) revealed a North Pacific sleepscape in which seals averaged only 2 hours of sleep per day for 7 months, rivaling the record for the least sleep among all mammals, which is currently held by the African elephant (about 2 hours per day).
Despite rapid advances in sensor development and technological miniaturization, it remains challenging to non-invasively record small-amplitude electrophysiological signals from an animal in its natural environment. Many advances in ecophysiology and biologging have arisen through sleep studies, which rely on detecting small signals over multiple days and minimal disruption of natural animal behavior. This paper describes the development of a surface-mounted system that has allowed novel electrophysiological recordings of sleep in wild marine mammals. We discuss our iterative design process by providing sensor-comparison data, detailed technical illustrations, and material recommendations. We describe the system’s performance over multiple days in 12 freely moving northern elephant seals (Mirounga angustirostris) sleeping on land and in water in captivity and the wild. We leverage advances in signal processing by applying independent components analysis and inertial motion sensor calibrations to maximize signal quality across large (> 10 gigabyte), multi-day datasets. Our study adds to the suite of biologging tools available to scientists seeking to understand the physiology and behavior of wild animals in the context in which they evolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.