The advancement in the field of aerial robotics and control engineering has created many opportunities for the utilization of Unmanned Aerial Vehicles (UAVs). Applications of UAVs from precision agriculture to delivering medicines and products at our doorsteps cannot be ignored. Quadrotors are the widely studied as sub-category of the rotor-type UAVs. Their ability to hover, vertical take-off and landing along with their small size and simple design make them suitable for many real-life applications like medicine delivery in containment zones struck with COVID-19. But under actuation caused due to four rotors to control six inputs creates instability in their flight. In this paper, Quadrotors and various Quadrotor applications are discussed. The various modeling and control techniques are discussed. Controlling techniques like LQR, LQG, PID and robust control is implemented for position, attitude and altitude control. Results for Proportional Integral and Derivative (PID) and Model Reference Adaptive Control (MRAC) of model generated using force-moment mathematical model are analyzed and compared using MATLAB Simulink. These control techniques are implemented for position, attitude and altitude control. In this paper, it has been concluded that MRAC performs better as compared to PID controller for position, attitude and Altitude control of Quadrotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.