In this study, we adopt a coupled fluid-rigid body simulation using the moving computational domain method and multi-axis sliding mesh method for the takeoff, hovering, and yawing flight of an electric vertical takeoff and landing aircraft (eVTOL). The aircraft model has four pairs of coaxial propellers, and the computational domain is divided into three domains to move the aircraft and eight propeller domains to rotate the propellers. As a result, we clarify the behavior and aerodynamic force of the aircraft when the input values are determined by the automatic control. The results in the flow field also show that the downwash spreads in a crisscross pattern on the ground, the wind reaches different ranges on the ground depending on the flight altitude, and that the coaxial propeller causes an asymmetry in the velocity field during yawing. Consequently, we conclude that this method is effective for the flight simulation of an eVTOL.
In this study, we adopt the coupled fluid–rigid body simulation using the moving computational domain method and the multi–axis sliding mesh method to the takeoff, hovering, and yawing flight of electric vertical takeoff and landing aircraft. The aircraft model has four pairs of coaxial propellers, and the computational domain is divided into three domains to move the aircraft and eight propeller domains to rotate the propellers. As a result, we clarify the behavior and aerodynamic force of the aircraft when the input values are determined by the automatic control. The results in the flow field also show that the downwash spreads in a crisscross pattern on the ground, that the wind reaches different ranges on the ground depending on the flight altitude, and that the coaxial propeller causes a asymmetry in the velocity field during yawing. Consequently, we conclude that this method is effective for the flight simulation of electric vertical takeoff and landing aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.