Introduction: Chikungunya virus (CHIKV), a reemerging human arthropod borne virus, can causes global epidemic outbreaks and has become a serious health concern due to the unavailability of any antiviral therapy/vaccine. Extensive research has been conducted to target different proteins from CHIKV to curtail the spread of virus. Areas covered: This review provides an overview of the granted patents including the current status of antiviral strategies targeting CHIKV. Expert opinion: Under the current scenario, potential molecules and different approaches have been utilized to suppress CHIKV infection. MV-CHIKV and VRC-CHKVLP059-00-VP vaccine candidates have successfully completed phase I clinical trials and ribavirin (inhibitor) has shown significant inhibition of CHIKV replication and could be the most promising candidates. The drug resistance and toxicity can be modulated by using the inhibitors/drugs in combination. Moreover, nanoparticle formulations can improve the efficacy and bioavailability of drugs.
Non-structural protein 4 (nsP4) polymerase of chikungunya virus (CHIKV) has a crucial role in genome replication and hence could act as a promising target for novel therapeutics. Though, nsP4 is important in viral life cycle, but it is less explored as therapeutic target. The catalytic core of nsP4 Polymerase includes conserved GDD motif which is present not only across different CHIKV strains but also across other Alphaviruses. This emphasizes the uniqueness and importance of this motif in the functioning of nsP4 polymerase and hence, we focused on GDD motif for docking of drug molecules. Herein, a model of nsP4 polymerase was developed using Swiss Model, validated by Ramachandran plot and molecular dynamic simulation. Molecular docking was performed using LeadIT FlexX flexible docking module with FDA approved drug molecule library. On the basis of flexX score, top 5 leads with flexX scores-33.7588,-30.2555,-29.6043,-28.916 and-28.5042 were selected. The bonding pattern of these leads were analysed in discovery studio and were further screened on the basis of molecular dynamic simulation studies. Simulation analysis revealed that only the top lead, Mitoxantrone Hydrochloride which is an anticancer drug and is currently indicated in leukemias and lymphomas interacted favourably and stably with nsP4. Our findings suggest that Mitoxantrone Hydrochloride can be a potential novel inhibitor of CHIKV polymerase and should be further validated by in vitro assays. Keywords Catalytic triad Á Chikungunya virus (CHIKV) Á Molecular docking Á RNA dependent RNA polymerase Electronic supplementary material The online version of this article (
The world is reeling under severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and it will be frightening if compounded by other co-existing infections. The co-occurrence of the Dengue virus (DENV) and Chikungunya virus (CHIKV) has been into existence, but recently the co-infection of DENV and SARS-CoV-2 has been reported. Thus, the possibility of DENV, CHIKV, and SARS-CoV-2 co-infection could be predicted in the future with enhanced vulnerability. It is essential to elucidate the host interactors and the connected pathways to understand the biological insights. The in silico approach using Cytoscape was exploited to elucidate the common human proteins interacting with DENV, CHIKV, and SARS-CoV-2 during their probable co-infection. In total, 17 interacting host proteins were identified showing association with envelope, structural, non-structural, and accessory proteins. Investigating the functional and biological behaviour using PANTHER, UniProtKB, and KEGG databases uncovered their association with several cellular pathways including, signaling pathways, RNA processing and transport, cell cycle, ubiquitination, and protein trafficking. Withal, exploring the DrugBank and Therapeutic Target Database, total seven druggable host proteins were predicted. Among all integrin beta-1, histone deacetylase-2 (HDAC2) and microtubule affinity-regulating kinase-3 were targeted by FDA approved molecules/ drugs. Furthermore, HDAC2 was predicted to be the most significant target, and some approved drugs are available against it. The predicted druggable targets and approved drugs could be investigated to obliterate the identified interactions that could assist in inhibiting viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.