In an attempt to develop predictive tools for the determination of new ionic liquid solvents, QSPR models for the melting points of 126 structurally diverse pyridinium bromides in the temperature range 30-200 degrees C were developed with the CODESSA program. Six- and two-descriptor equations with squared correlation coefficients (R(2)) of 0.788 and 0.713, respectively, are reported for the melting temperatures. The models illustrate the importance of information content indices, total entropy, and the average nucleophilic reactivity index for an N atom.
The importance of melting points in characterization, in the estimation of other physical properties
and toxicity, and in practical applications such as ionic liquids is summarized, as are difficulties in the systematic
treatment of melting points in terms of QSPR. Classical correlations of melting points of congeneric and diverse
sets are discussed together with group contribution methods, combined approaches, and computer simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.