Blood production is ensured by rare self-renewing hematopoietic stem cells (HSCs). How HSCs accommodate the diverse cellular stresses associated with their life-long activity remains elusive. Here, we identify autophagy as an essential mechanism protecting HSCs from metabolic stress. We show that HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy following ex vivo cytokine withdrawal and in vivo caloric restriction. We demonstrate that FoxO3a is critical to maintain a gene expression program that poise HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FoxO3a-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system.
The ubiquitin-like molecule ATG12 is required for the early steps of autophagy. Recently, we identified ATG3, the E2-like enzyme required for LC3 lipidation during autophagy, as an ATG12 conjugation target. Here, we demonstrate that cells lacking ATG12-ATG3 have impaired basal autophagic flux, accumulation of perinuclear late endosomes, and impaired endolysosomal trafficking. Furthermore, we identify an interaction between ATG12-ATG3 and the ESCRT-associated protein Alix (also known as PDCD6IP) and demonstrate that ATG12-ATG3 controls multiple Alix-dependent processes including late endosome distribution, exosome biogenesis, and viral budding. Lastly, similar to ATG12-ATG3, Alix is functionally required for efficient basal, but not starvation-induced, autophagy. Overall, these results identify a link between the core autophagy and ESCRT machineries and uncover a role for ATG12-ATG3 in late endosome function that is distinct from the canonical role of either ATG in autophagosome formation.
The clinically common mutant opsin P23H, associated with autosomal dominant retinitis pigmentosa, yields low levels of rhodopsin when retinal is added following induction of the protein in stably transfected HEK-293 cells. We previously showed that P23H rhodopsin levels could be increased by providing a 7-membered ring, locked analog of 11-cis-retinal during expression of P23H opsin in vivo. Here we demonstrate that the mutant opsin is effectively rescued by 9-or 11-cis-retinal, the native chromophore. When retinal was added during expression, P23H rhodopsin levels were 5-fold (9-cis) and 6-fold (11-cis) higher than when retinal was added after opsin was expressed and cells were harvested. Levels of P23H opsin were increased ϳ3.5-fold with both compounds, but wild-type protein levels were only slightly increased. Addition of retinal during induction promoted the Golgi-specific glycosylation of P23H opsin and transport of the protein to the cell surface. P23H rhodopsins containing 9-or 11-cis-retinal had blueshifted absorption maxima and altered photo-bleaching properties compared with the corresponding wild-type proteins. Significantly, P23H rhodopsins were more thermally unstable than the wild-type proteins and more rapidly bleached by hydroxylamine in the dark. We suggest that P23H opsin is similarly unstable and that retinal binds and stabilizes the protein early in its biogenesis to promote its cellular folding and trafficking. The implications of this study for treating retinitis pigmentosa and other protein conformational disorders are discussed.
Retinal pigment epithelium-specific protein 65 kDa (RPE65) is a protein responsible for isomerization of all-trans-retinaldehyde to its photoactive 11-cis-retinaldehyde and is essential for the visual cycle. RPE65 mutations can cause severe, early onset retinal diseases such as Leber congenital amaurosis (LCA). A naturally occurring rodent model of LCA with a recessive nonsense Rpe65 mutation, the rd12 mouse, displays a profoundly diminished rod electroretinogram (ERG), an absence of 11-cis-retinaldehyde and rhodopsin, an overaccumulation of retinyl esters in retinal pigmented epithelial (RPE) cells, and photoreceptor degeneration. rd12 mice were injected subretinally at postnatal day 14 with rAAV5-CBA-hRPE65 vector. RPE65 expression was found over large areas of RPE soon after treatment. This led to improved rhodopsin levels with ERG signals restored to near normal. Retinyl ester levels were maintained at near normal, and fundus and retinal morphology remained normal. All parameters of restored retinal health remained stable for at least 7 months. The Morris water maze behavioral test was modified to test rod function under very dim light; rd12 mice treated in one eye performed similar to normally sighted C57BL/6J mice, while untreated rd12 mice performed very poorly, demonstrating that gene therapy can restore normal vision-dependent behavior in a congenitally blind animal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.