Fuel hazard estimates are vital for the prediction of fire behaviour and planning fuel treatment activities. Previous literature has highlighted the potential of Terrestrial Laser Scanning (TLS) to be used to assess fuel properties. However, operational uptake of these systems has been limited due to a lack of a sampling approach that balances efficiency and data efficacy. This study aims to assess whether an operational approach utilising Terrestrial Laser Scanning (TLS) to capture fuel information over an area commensurate with current fuel hazard assessment protocols implemented in South-Eastern Australia is feasible. TLS data were captured over various plots in South-Eastern Australia, utilising both low- and high-cost TLS sensors. Results indicate that both scanners provided similar overall representation of the ground, vertical distribution of vegetation and fuel hazard estimates. The analysis of fuel information contained within individual scans clipped to 4 m showed similar results to that of the fully co-registered plot (cover estimates of near-surface vegetation were within 10%, elevated vegetation within 15%, and height estimates of near-surface and elevated strata within 0.05 cm). This study recommends that, to capture a plot in an operational environment (balancing efficiency and data completeness), a sufficient number of non-overlapping individual scans can provide reliable estimates of fuel information at the near-surface and elevated strata, without the need for co-registration in the case study environments. The use of TLS within the rigid structure provided by current fuel observation protocols provides incremental benefit to the measurement of fuel hazard. Future research should leverage the full capability of TLS data and combine it with moisture estimates to gain a full realisation of the fuel hazard.
Computational models of wildfires are necessary for operational prediction and risk assessment. These models require accurate spatial fuel data and remote sensing techniques have ability to provide high spatial resolution raster data for landscapes. We modelled a series of fires to understand and quantify the impact of the spatial resolution of fuel data on the behaviour of fire predictive model. Airborne laser scanning data was used to derive canopy height models and percentage cover grids at spatial resolutions ranging from 2 m to 50 m for Mallee heath fire spread model. The shape, unburnt area within the fire extent and extent of fire areas were compared over time. These model outputs were strongly affected by the spatial resolution of input data when the length scale of the fuel data is smaller than connectivity length scale of the fuel. At higher spatial resolutions breaks in the fuel were well resolved often resulting in a significant reduction in the predicted size of the fire. Our findings provide information for practitioners for wildfire modelling where local features may be important, such as operational predictions incorporating fire and fuel breaks, and risk modelling of peri-urban edges or assessment of potential fuel reduction mitigations.
Canopy cover is a primary attribute used in empirical wildfire models for certain fuel types. Accurate estimation of canopy cover is key to ensuring accurate prediction of fire spread and behaviour in these fuels. Airborne Laser Scanning (ALS) is a promising active remote sensing technology for estimating canopy cover in natural eco-systems since it can penetrate and measure the vegetation canopy. Various methods have been developed to estimate canopy cover from ALS data. However, little attention has been given to the evaluation of algorithms used to calculate canopy cover and the subsequent influence these algorithms can have on wildfire behaviour models. In this study we evaluate the effect of using different algorithms to calculate canopy cover on the performance of the Australian Mallee-heath fire spread model. ALS data was used to derive five canopy cover models. Fire spread metrics including burned area, unburned area within the fire extent, and extent of fire were compared for different model run times. The results show that these metrics are strongly influenced by choice of algorithm used to calculate canopy cover. The results from this study may provide practical guidance for the optimal selection of estimation methods in canopy cover mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.