Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.
Phase separation in thin film blends of poly(tert-butyl acrylate) (PtBA) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), is studied as functions of annealing temperature and time, using reflected light optical microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results demonstrate that the PtBA/TPP blend system confined to thin films ( approximately 90 nm) exhibits lower critical solution temperature (LCST) behavior with a critical temperature of approximately 70 degrees C and a critical composition of 60 wt % PtBA with insignificant dewetting at the phase boundary. Off-critical spinodal behavior is observed for 58 and 62 wt % PtBA blend films. Phase separation by nucleation and growth is observed for all compositions outside the window between 58 and 62 wt % PtBA. The temporal evolution of spinodal decomposition in 60 wt % PtBA blend films is explored at annealing temperatures of 75, 85, 95, and 105 degrees C. The morphological evolution in 60 wt % PtBA blend films is similar for all experimental temperatures (75, 85, 95, and 105 degrees C) with the expected shorter time scales for phase evolution at higher annealing temperatures. Fast Fourier transforms of optical micrographs reveal that these blend films immediately undergo phase separation by spinodal decomposition during temperature jump experiments. Power law scaling for the characteristic wavevector with time (q approximately t(n) with n approximately -1/4 to -1/3) for domain growth during the early stages of phase separation yields to domain pinning at the later stages for 60 wt % PtBA blend films annealed at 75, 85, and 95 degrees C. In contrast, domain growth is pinned over the entire experimental time scale for 60 wt % PtBA blend films annealed at 105 degrees C.
Ultrathin films of polystyrene (PS) were grown from self-assembled monolayers by the "grafting-from" technique. The initiating system consisted of a dithiol azobisisobutyronitrile-type free-radical initiator that was activated by irradiation at 300 nm. The thickness of the PS films ranged from 7 to 190 nm and could be controlled by varying the reaction time or the monomer concentration. The films were characterized by ellipsometry and Fourier transform-reflection absorption infrared spectroscopy after Soxhlet extraction of residual physisorbed polymer. These films were unstable above 60°C, and a water-jacketed Soxhlet extractor was designed to maintain solvent temperatures below 45°C during extraction.
The surface morphology of dewetting poly(tert-butyl acrylate) (PtBA) and trisilanolphenyl-POSS (TPP) bilayers has been studied as a function of time at 95 degrees C. For short annealing times, only the upper nanoparticle (TPP) layer dewets from the underlying PtBA layer. The number and lateral dimensions of the holes in the upper TPP layer increase with increasing annealing times, forming interconnected rim structures. At later annealing times, scattered holes that reach down into the PtBA layer are observed among the interconnected rim structures. Fractal nanofiller (TPP)-rich aggregates are found at the bottom of the scattered holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.