We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of < 10 −18 / √ Hz in the 50 mHz-10 Hz frequency range, providing access to a rich scientific region with 123 1954 J. M. Hogan et al. substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ( 100 m) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.
The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution X-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12 keV, which encompasses the most diagnostically rich part of the X-ray band. The sensor consists of a 32-channel array of X-ray microcalorimeters, each with an energy resolution of about 6 eV. The very low temperature required for operation of the array (60 mK) is provided by a four-stage cooling system containing a single-stage adiabatic demagnetization refrigerator, a superfluid-helium cryostat, a solid-neon dewar, and a single-stage, Stirling-cycle cooler. The Suzaku/XRS is the first orbiting X-ray microcalorimeter spectrometer and was designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument worked properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid-He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft and into space. In this paper we present the design and ground testing of the XRS instrument, and then describe the in-flight performance. An energy resolution of 6 eV was achieved during pre-launch tests and a resolution of 7 eV was obtained in orbit. The slight degradation is due to the effects of cosmic rays.
The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5 layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wave front sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.
Multilayer coatings with three layers were designed to yield an increase in normal-incidence reflectance in the extreme ultraviolet over that of the available single-layer coatings. Multilayer coatings based on Al, MgF(2), and either SiC or B(4)C were demonstrated to have higher reflectance than single layers of SiC and B(4)C in the spectral region from 57.9 nm to the H Lyman-alpha line (121.6 nm) and above. The increase in reflectance was higher at wavelengths close to 121.6 nm. Reflectance degraded slightly over time in the same way as for single layers. After a few months, multilayer coatings maintained higher reflectance than their single-layer counterparts.
Reflectance measurements and optical constants of thin films of ion-beam-deposited SiC, Mo, Mg(2)Si, and InSb and of evaporated Cr have been measured in the extreme-ultraviolet (EUV) spectral region from 49.0 to 200.0 nm. In this spectral region no optical constant data were available for materials deposited by ion-beam deposition. We compared our data with those for bulk samples and for thin films prepared by different techniques. The goal of this research has been to study candidate materials for multilayer coatings in the EUV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.