This work focuses on the removal of sulfate from mining waters by using electrocoagulation with iron electrodes. A comparison of the results obtained by electrocoagulation with those obtained with the application of conventional chemical coagulation is provided. The results show that sulfate can be removed from synthetic mining waters by electrocoagulation, and that the pH and coagulant dosage play a very important role. During chemical coagulation under acidic conditions, it is possible to use a low dosage of iron and remove more than 80% of the sulfate present in water. However, chemical coagulation seems to behave as a kind of ion-exchange process
The mining industry is known to be a major producer of sulfate-rich waters that are harmful to aquatic systems, accelerate acid mine drainage formation and hinder the reuse and recycling of process water. In recent years, many treatment techniques have been studied and developed to treat sulfate-rich streams. One such technique, electrocoagulation (EC), was proposed as a possible alternative to conventional treatment technologies. Electrocoagulation has been used for the removal of nitrate, cyanide and toxic metals from mining waters, but the information about sulfate removal is scarce. In this paper, the results from a systematic study on sulfate removal by EC with iron electrodes applying a 3 3 -full factorial design are discussed. The results show the leading role of applied current on sulfate removal. In addition, the study concludes that the utilisation of iron electrodes was more efficient in terms of sulfate removal comparing to aluminium electrodes. The removal of sulfate was as high as 54 % and 10 % using iron and aluminium electrodes respectively. Under the studied experimental conditions, sulfate was proposed to be removed because of particle charge neutralisation and enmeshment of the studied anion in iron oxides and hydroxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.