We investigated the efficacy of optogenetic inhibition at presynaptic terminals using halorhodopsin, archaerhodopsin and chloride-conducting channelrhodopsins. Precisely timed activation of both archaerhodopsin and halorhodpsin at presynaptic terminals attenuated evoked release. However, sustained archaerhodopsin activation was paradoxically associated with increased spontaneous release. Activation of chloride-conducting channelrhodopsins triggered neurotransmitter release upon light onset. Our results indicate that the biophysical properties of presynaptic terminals dictate unique boundary conditions for optogenetic manipulation.
Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, ⌬ 9 -Tetrahydrocannabinol (THC) 3 is a major constituent of Cannabis and serves as an agonist of the cannabinoid receptors CB1 (located mainly in neural cells) and CB2 (located mainly on immune cells). The second major constituent of Cannabis extract is cannabidiol (CBD), which is virtually inactive at the CB1 and CB2 receptors (1). Thus, because of its negligible activity at the CB1 receptor, CBD lacks the psychoactive effects that accompany the use of THC. Moreover, CBD was demonstrated to antagonize some undesirable effects of THC, including intoxication, sedation, and tachycardia, while sharing neuroprotective, anti-oxidative, anti-emetic, and anti-carcinogenic properties (2-4). Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells, including suppression of humoral response, immune cell proliferation, maturation, and migration, and antigen presentation (5-9). Despite increasing amounts of such observations, the molecular mechanisms involved in these cannabinoid-mediated effects are not yet fully understood.Microglial cells are resident macrophages of the central nervous system and serve as early host defense against pathogens. Activation of microglial cells leads to the release of proinflammatory and neurotoxic factors and serves as part of the neuroinflammatory process (10). The BV-2 murine microglial cell line is known to retain morphological, phenotypic, and functional properties associated with freshly isolated microglia such as expression of nonspecific esterase activity, phagocytic ability, and the absence of peroxidase activity (11,12). Furthermore, these cells release lysozyme and, when stimulated, interleukin (IL)-1 and tumor necrosis factor ␣ (11, 12). Close similarities between BV-2 and primary microglia in mechanisms mediating microglial stimulations, e.g. by lipopolysaccharide (LPS), S100B, or -amyloid, were reported (13). These properties make BV-2 cells an appropriate model for studying the activation of microglia in vitro. It has recently been shown that BV-2 cells express elements of the cannabinoid signaling systems, including the presence of endocannabinoids, i.e. anandamide and 2-arachidonoylglycerol, and cannabinoid or cannabinoid- 3 The abbreviations used are: THC, ⌬ 9 -tetrahydrocannabinol; CBD, cannabidiol; abn-CBD, abnormal cannabidiol; STAT, signal transducers and activators of transcription; IL, interleukin; IFN, ...
A putative endogenous cannabinoid ligand, arachidonylethanolamide (termed "anandamide"), was isolated recently from porcine brain. Here we demonstrate that this compound is a specific cannabinoid agonist and exerts its action directly via the cannabinoid receptors. Anandamide specifically binds to membranes from cells transiently (COS) or stably (Chinese hamster ovary) transfected with an expression plasmid carrying the cannabinoid receptor DNA but not to membranes from control nontransfected cells. Moreover, anandamide inhibited the forskolin-stimulated adenylate cyclase in the transfected cells and in cells that naturally express cannabinoid receptors (N18TG2 neuroblastoma) but not in control nontransfected cells. As with exogenous cannabinoids, the inhibition by anandamide of the forskolin-stimulated adenylate cyclase was blocked by treatment with pertussis toxin. These data indicate that anandamide is an endogenous agonist that may serve as a genuine neurotransmitter for the cannabinoid receptor.
Optogenetic silencing allows time-resolved functional interrogation of defined neuronal populations. However, the limitations of inhibitory optogenetic tools impose stringent constraints on experimental paradigms. The high light power requirement of light-driven ion pumps and their effects on intracellular ion homeostasis pose unique challenges, particularly in experiments that demand inhibition of a widespread neuronal population in vivo. Guillardia theta anion-conducting channelrhodopsins (GtACRs) are promising in this regard, due to their high single-channel conductance and favorable photon-ion stoichiometry. However, GtACRs show poor membrane targeting in mammalian cells, and the activity of such channels can cause transient excitation in the axon due to an excitatory chloride reversal potential in this compartment. Here, we address these problems by enhancing membrane targeting and subcellular compartmentalization of GtACRs. The resulting soma-targeted GtACRs show improved photocurrents, reduced axonal excitation and high light sensitivity, allowing highly efficient inhibition of neuronal activity in the mammalian brain.
It has been known for some time that chronic treatment of neuronal cells and tissues with opioids, contrary to their acute effect, leads to an increase in cAMP accumulation. This phenomenon, defined as adenylyl cyclase superactivation, has been implicated in opiate addiction, yet the mechanism by which it is induced remains unclear. Here, we show that this phenomenon can be reproduced and studied in COS-7 cells cotransfected with adenylyl cyclase type V and mu-opioid receptor cDNAs. These cells display acute opioid inhibition of adenylyl cyclase activity, whereas prolonged exposure to the mu-agonist morphine or [-Ala2, N-methyl-Phe4, Gly-ol5]enkephalin leads to a time-dependent superactivation of adenylyl cyclase. This superactivated state is reversible, because it is gradually lost following agonist withdrawal. Adenylyl cyclase superactivation can be prevented by pertussis toxin pretreatment, indicating the involvement of Gi/o proteins, or by cotransfection with the carboxyl terminus of beta-adrenergic receptor kinase or with alpha-transducin (scavengers of Gbetagamma dimers), indicating a role for the G protein betagamma dimers in adenylyl cyclase superactivation. However, contrary to several other Gbetagamma-dependent signal transduction mechanisms (e.g. the extracellular signal-regulated kinase 2/MAP kinase pathway), adenylyl cyclase superactivation is not affected by the Ras dominant negative mutant N17-Ras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.