Recent advances in Socially Aware Networks (SANs) have allowed its use in many domains, out of which social Internet of vehicles (SIOV) is of prime importance. SANs can provide a promising routing and forwarding paradigm for SIOV by using interest-based communication. Though able to improve the forwarding performance, existing interest-based schemes fail to consider the important issue of protecting users' interest information. In this paper, we propose a PRivacy-preserving Interest-based Forwarding scheme (PRIF) for SIOV, which not only protects the interest information, but also improves the forwarding performance. We propose a privacy-preserving authentication protocol to recognize communities among mobile nodes. During data routing and forwarding, a node can know others' interests only if they are affiliated with the same community. Moreover, to improve forwarding performance, a new metric community energy is introduced to indicate vehicular social proximity. Community energy is generated when two nodes encounter one another and information is shared among them. PRIF considers this energy metric to select forwarders towards the destination node or the destination community. Security analysis indicates PRIF can protect nodes' interest information. In addition, extensive simulations have been conducted to demonstrate that PRIF outperforms the existing algorithms including the BEEINFO, Epidemic, and PRoPHET.
The development of a novel targeted therapy for acute myocardial infarction (AMI) remains a major hurdle in the treatment of cardiovascular disease. Previous studies indicate that mitochondrial uncoupling protein 2 (UCP‑2) is involved in the progression of AMI. The present study uses lentivirus knockdown of Sirtuin 1 (SIRT1) in H9c2 cells under hypoxia conditions, and revealed that levels of SIRT1 are accompanied by the expression of UCP‑2. Therefore, it was hypothesized that SIRT1 might be important in the development of myocardial infarction. The present study demonstrated that: i) exogenous expression of SIRT1 in vitro induced resistance to hypoxic injury in H9c2 cells, coinciding with a reduction in expression of UCP‑2; ii) knockdown of UCP‑2 conferred resistance to hypoxic injury in H9c2; iii) intraperitoneal injection of resveratrol and the resultant increase in SIRT1 levels may protect against ischemia/reperfusion injury in vivo, concomitant with decreased expression of UCP‑2. These findings provide direct evidence that the SIRT1/UCP‑2 axis might be important in myocardial infarction, and suggest that this axis may be a novel therapeutic target for the treatment of cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.