Plastic waste (PW) is one of the most rapid-growing waste streams in municipal solid waste all over the world. India has become a global player in the plastic value chain. Despite low consumption, domestic generation and imports create a significant burden on the overall waste management system, which requires in-depth understanding of the scenario and pathways that can mitigate the crisis. Although Indian researchers have widely researched technology-related issues in academic papers, a substantial knowledge gap exists in understanding the problem’s depth and possible solutions. This review article focuses on current plastic production, consumption, and waste generation in India. This review article mainly analyzes data and information regarding Indian PW management and highlights some critical issues such as reverse supply chain, effective PW management, source-specific recovery, and PW rules in India. Comprehensively, this review will help to identify implementable strategies for policymakers and research opportunities for future researchers in holistic PW management and recycling in India, focusing on the circular economy and sustainable development goals.
This review article aims to suggest recycling technological options in India and illustrates plastic recycling clusters and reprocessing infrastructure for plastic waste (PW) recycling in India. The study shows that a majority of states in India are engaged in recycling, road construction, and co-processing in cement kilns while reprocessing capabilities among the reprocessors are highest for polypropylene (PP) and polyethylene (PE) polymer materials. This review suggests that there are key opportunities for mechanical recycling, chemical recycling, waste-to-energy approaches, and bio-based polymers as an alternative to deliver impact to India’s PW problem. On the other hand, overall, polyurethane, nylon, and polyethylene terephthalate appear most competitive for chemical recycling. Compared to conventional fossil fuel energy sources, polyethylene (PE), polypropylene (PP), and polystyrene are the three main polymers with higher calorific values suitable for energy production. Also, multi-sensor-based artificial intelligence and blockchain technology and digitization for PW recycling can prove to be the future for India in the waste flow chain and its management. Overall, for a circular plastic economy in India, there is a necessity for a technology-enabled accountable quality-assured collaborative supply chain of virgin and recycled material.
Supplementary Information
The online version contains supplementary material available at 10.1007/s13762-022-04079-x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.