Fibrin plays a critical role in wound healing and hemostasis, yet it is also the main case of cardiovascular diseases and thrombosis. Here, we show the unique design of Au-Cu@PANI alloy core–shell rods for fibrin clot degradation. Microscopic (transmission electron microscopy (TEM), scanning transmission electron microscopy–energy-dispersive X-ray (STEM-EDX)) and structural characterizations (powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS)) of the Au-Cu@PANI hybrid material reveal the formation of Au–Cu heterogeneous alloy core rods (aspect ratio = 3.7) with thin Cu2O and PANI shells that create a positive surface charge (ζ-potential = +22 mV). This architecture is supported by the survey XPS spectrum showing the presence of Cu 2p, N 1s, and C 1s features with binding energies of 934.8, 399.7, and 284.8 eV, respectively. Upon photolysis (λ ≥ 495 or 590 nm), these hybrid composite nanorods provide sufficient excited-state redox potential to generate reactive oxygen species (ROS) for degradation of model fibrin clots within 5–7 h. Detailed scanning electron microscopy (SEM) analysis of the fibrin network shows significant morphology modification including formation of large voids and strand termini, indicating degradation of fibrin protofibril by Au-Cu@PANI. The dye 1,3-diphenylisobenzofuran (DPBF) used to detect the presence of 1O2 shows a 27% bleaching of the absorption at λ = 418 nm within 75 min of irradiation of an aqueous Au-Cu@PANI solution in air. Moreover, electron paramagnetic resonance (EPR) spin-trapping experiments reveal a hyperfine-coupled triplet signature at room temperature with intensities 1:1:1: and g-value = 2.0057, characteristic of the reaction between the spin probe 4-Oxo-TEMP and 1O2 during irradiation. Controlled 1O2 scavenging experiments by NaN3 show 82% reduction in the spin-trapped EPR signal area. Both DPBF bleaching and EPR spin trapping indicate that in situ generated 1O2 is responsible for fibrin strand scission. This unique nanomaterial function via use of ubiquitous oxygen as a reagent could open creative avenues for future in vivo biomedical applications to treat fibrin clot diseases.
Increases in community and industrial activities have led to disturbances of the environmental balance and the contamination of water systems through the introduction of organic and inorganic pollutants. Among the various inorganic pollutants, Pb (II) is one of the heavy metals possessing non-biodegradable and the most toxic characteristics towards human health and the environment. The present study is focussed on the synthesis of efficient and eco-friendly adsorbent material that can remove Pb (II) from wastewater. A green functional nanocomposite material based on the immobilization of α-Fe2O3 nanoparticles with xanthan gum (XG) biopolymer has been synthesized in this study to be applied as an adsorbent (XGFO) for sequestration of Pb (II). Spectroscopic techniques such as scanning electron microscopy with energy dispersive X-ray (SEM-EDX), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet visible (UV-Vis) and X-ray photoelectron spectroscopy (XPS) were adopted for characterizing the solid powder material. The synthesized material was found to be rich in key functional groups such as –COOH and –OH playing important roles in binding the adsorbate particles through ligand-to-metal charge transfer (LMCT). Based on the preliminary results, adsorption experiments were conducted, and the data obtained were applied to four different adsorption isotherm models, viz the Langmuir, Temkin, Freundlich and D–R models. Based on the high values of R2 and low values of χ2, the Langmuir isotherm model was found to be the best model for simulation of data for Pb (II) adsorption by XGFO. The value of maximum monolayer adsorption capacity (Qm) was found to be 117.45 mg g−1 at 303 K, 126.23 mg g−1 at 313 K, 145.12 mg g−1 at 323 K and 191.27 mg g−1 at 323 K. The kinetics of the adsorption process of Pb (II) by XGFO was best defined by the pseudo-second-order model. The thermodynamic aspect of the reaction suggested that the reaction is endothermic and spontaneous. The outcomes proved that XGFO can be utilized as an efficient adsorbent material for the treatment of contaminated wastewater.
High efficiency removal of methyl orange (MO) and bromothymol blue (BT) dyes from contaminated water has been reported using magnetic mesoporous nanoparticles modified with cationic polymer brush (poly(2-methacryloyloxy)ethyl] trimethylammonium chloride solution) (Fe3O4-MSNs-PMETAC). Atom transfer radical polymerization (ATRP) was utilized to grow the polymer chains on the magnetic mesoporous silica nanoparticles. The chemical surface modifications were confirmed using IR, TGA, SEM and TEM. The results show that the obtained Fe3O4-MSNs-PMETAC materials were nearly spherical in shape with approximately 30 nm magnetic core, and silica shell thicknesses ranged from 135 to 250 nm. The adsorption performance of the material was found to be unaffected by the pH (3-9) of the media, with a removal efficiency of 100% for both dyes. The adsorption of BT and MO on the surface of Fe3O4-MSNs-PMETAC was found to follow Freundlich and Langmuir models, respectively. Since the synthesized nanocomposite materials exhibit an enhanced properties such as large maximum adsorption capacity, rapid synthesis process, and easy separation from solution, it could be an effective sorbent for the removal of other pollutants such as potentially toxic anionic elements (e.g., arsenate and chromate ions) from water and wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.