BackgroundAn inositol 1,4,5-trisphosphate binding protein, comprising 2 isoforms termed PRIP-1 and PRIP-2, was identified as a novel modulator for GABAA receptor trafficking. It has been reported that naive PRIP-1 knockout mice have hyperalgesic responses.FindingsTo determine the involvement of PRIP in pain sensation, a hind paw withdrawal test was performed before and after partial sciatic nerve ligation (PSNL) in PRIP-1 and PRIP-2 double knockout (DKO) mice. We found that naive DKO mice exhibited normal pain sensitivity. However, DKO mice that underwent PSNL surgery showed increased ipsilateral paw withdrawal threshold. To further investigate the inverse phenotype in PRIP-1 KO and DKO mice, we produced mice with specific siRNA-mediated knockdown of PRIPs in the spinal cord. Consistent with the phenotypes of KO mice, PRIP-1 knockdown mice showed allodynia, while PRIP double knockdown (DKD) mice with PSNL showed decreased pain-related behavior. This indicates that reduced expression of both PRIPs in the spinal cord induces resistance towards a painful sensation. GABAA receptor subunit expression pattern was similar between PRIP-1 KO and DKO spinal cord, while expression of K+-Cl--cotransporter-2 (KCC2), which controls the balance of neuronal excitation and inhibition, was significantly upregulated in DKO mice. Furthermore, in the DKD PSNL model, an inhibitor-induced KCC2 inhibition exhibited an altered phenotype from painless to painful sensations.ConclusionsSuppressed expression of PRIPs induces an elevated expression of KCC2 in the spinal cord, resulting in inhibition of nociception and amelioration of neuropathic pain in DKO mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.