We propose a novel hybrsid algorithm named, FOA-FA to solve the nonlinear programming problems (NLPPs). The main feature of the hybrid algorithm is to integrate the strength of fruit fly optimization algorithm (FOA) in handling continuous optimization and the merit of firefly algorithm (FA) in achieving robust exploration. The methodology of the proposed algorithm consists of two phases. The first one employs a variation on original FOA employing a new adaptive radius mechanism (ARM) for exploring the whole scope around the fruit flies locations to overcome the drawbacks of original FOA which has been continues for the nonnegative orthant problems. The second one incorporates FA to update the previous best locations of fruit flies to avoid the premature convergence. The hybrid algorithm speeds up the convergence and improves the algorithm's performance. The proposed FOA-FA algorithm is tested on several benchmark problems and two engineering applications. The numerical comparisons have demonstrated its effectiveness and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.