Tuna (Thunnus spp.) and tuna-like species are significant sources of food and thus play a very important role in the economy of many countries. More than 48 species of tuna swarm the Atlantic, Indian, and Pacific Oceans, and the Mediterranean Sea. The annual global production of tuna has undergone a marked increase from less than 0.6 million metric tons in 1950 to almost 4.5 million metric tons in 2007. Tuna generally is processed as raw fish flesh and marketed as loins/steaks or as a canned food. In the tuna canning process, only about one-third of the whole fish is used. Thus, the canning industry generates as much as 70% solid wastes from original fish materials. This waste consists of muscle (after loins are taken), viscera, gills, dark flesh/muscle, head, bone, and skin. Conventionally, these protein-rich by-products from the tuna industry are processed into low market value products, such as fish meal and fertilizer. However, a promising alternative use of these by-products is as functional food ingredients. Fish protein hydrolysate (FPH), which is obtained through hydrolysis of tuna waste, can be used as an ingredient in food industries to provide functional effects such as whipping, gelling, and texturing properties. Recently, FPH was found to be a potential source of antioxidants (such as peptides with anticancer properties), antianemia compounds, and components for use in microbial growth media. This article is intended to summarize the existing knowledge about FPH, highlight some pertinent information related to the tuna fishing industry, and provide a new outlook on the production and applications of FPH.
BackgroundDoxorubicin hydrochloride (DOX·HCl), an anthracycline glycoside antibiotic, exhibits low oral bioavailability due to active efflux from intestinal P-glycoprotein receptors. The oral administration of DOX remains a challenge hence; no oral formulation for DOX is marketed, till date.Aim of the studyTo improve the oral bioavailability of DOX through, preparation of a nanoformulation i.e. PEGylated-doxorubicin(DOX)-loaded-poly-lactic-co-glycolic acid (PLGA)-Nanoparticles (NPs) and to develop and validate an ultra-high performance liquid chromatography electrospray ionization-synapt mass spectrometric bioanalytical method (UHPLC/ESI-QTOF–MS/MS) for plasma (Wistar rats) DOX quantification.Materials and methodsFor chromatography, Waters ACQUITY UPLC™ along with a BEH C-18 column (2.1 mm × 100 mm; 1.7 μm), mobile phase conditions (acetonitrile: 0.1% formic acid::1:1 v/v) and flow rate (0.20 ml/min) was used. For analyte recovery from rat plasma, a liquid–liquid extraction method (LLE), using Acetonitrile: 5 mM ammonium acetate in a ratio of 6:4 v/v at pH 3.5, was used.ResultsNanoformulation with a particle size (183.10 ± 7.41 nm), zeta potential (− 13.10 ± 1.04 mV), drug content (42.69 ± 1.97 µg/mg) and a spherical shape and smooth surface was developed. An elution time of 1.61 and 1.75 min along with a transition at m/z 544.42/397.27 and 528.46/321.41 were observed for DOX and internal standard (IS) Daunorubicin, respectively. In addition, a linear dynamic range with r2 ≥ 0.9985 over a concentration range of 1.00–2500.0 ng/ml was observed for different processes and parameters used in the study. Similarly a marked improvement i.e. 6.8 fold was observed, in PEGylated-DOX-PLGA-NPs as compared to DOX-S, in pharmacokinetics studies.ConclusionThe promising approach of PEGylated-DOX-PLGA-NPs may provide an alternate to intravenous therapy for better patient care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.