The present study investigated the dynamic regulation of the hypothalamo-pituitary-adrenal axis and its significance to acute stress responsiveness in the female rat. An automated, frequent blood-sampling technique allowed the circadian rhythm of corticosterone to be resolved into a series of pulses. These were equally distributed (mean interval, 50.9 +/- 3.7 min) throughout the 24-h cycle, but their magnitude varied significantly, being higher between 1800-2200 h (137 +/- 9 ng/ml) than between 0600-1000 h (75 +/- 17 ng/ml). This pattern of release indicates continuous, but variable, activity of the axis throughout the day. The pulsatile ultradian rhythm suggested alternate periods of secretion and inhibition, which were found to have a profound effect on the corticosterone responses to acute stress. Noise stress (10 min, 114 decibels) evoked a transient increase in corticosterone, which reached a maximum (377 +/- 87 ng/ml) 20 min after onset. However, within this group (n = 26) the response varied depending on the underlying basal activity. When stress coincided with a rising (secretory) phase of a pulse, corticosterone concentrations rose to 602 +/- 150% of mean basal concentrations (P < 0.001). In contrast, when stress coincided with a falling (nonsecretory) phase of a pulse, a significantly smaller response, no greater than a basal pulse, was evoked. Thus, the alternate periods of secretion and inhibition generating basal hypothalamo-pituitary-adrenal activity are an important determinant of responses to acute stress.
The dynamic patterns of basal and stimulated hypothalamo-pituitary-adrenal (HPA) activity of freely moving female Lewis and Fischer 344 rats were compared using an automated blood-sampling system. Both strains showed pulsatile corticosterone release throughout the 24 h cycle. Lewis rats showed clear circadian variation in both pulse frequency (8.4 +/- 0.4 pulses between 1700-2300 h vs. 5.3 +/- 0.8 pulses between 0500-1100 h; P < 0.05) and height (198 +/- 27 ng/ml between 1700-2300 h vs. 107 +/- 14 ng/ml between 0500-1100 h; P < 0.05). Fischer rats exhibited pulses of similar frequency and height to those in Lewis rats during the evening, but showed no circadian variation, resulting in higher mean daily corticosterone concentrations. Although both strains showed behavioral and HPA responses to white noise stress (10 min; 114 dB), Fischer rats showed much greater increases in total activity, grooming, and rearings, and two important differences in the corticosterone responses were observed. First, in Lewis rats a clear relationship existed between basal and stimulated HPA activities, in that a significant response was seen only when the stress coincided with the rising (secretory active) phase of a basal pulse. Noise stress coinciding with a falling (nonsecretory) phase elicited no significant response. In contrast, Fischer rats showed similar responses regardless of the underlying pulse phase. Second, after the peak response at 20 min (Lewis, 237 +/- 67 ng/ml; Fischer, 390 +/- 57 ng/ml), corticosterone levels fell rapidly in Lewis rats, but remained maximally elevated for 20 min in Fischer rats, resulting in a significantly greater integrated response. The corticosterone response to i.v. CRF was unaffected by pulse phase in both strains, suggesting that a suprapituitary mechanism mediates the phase-dependent response to stress in the Lewis strain. CRF-induced corticosterone levels rose more rapidly in Fischer rats, peaking at 10 min (473 +/- 95 ng/ml) compared with 30 min (390 +/- 75 ng/ml) in Lewis rats, suggesting greater pituitary sensitivity in this strain. Thus, differences in both central and pituitary control of the HPA axis contribute to the strain difference in stress responsiveness between female Lewis and Fischer rats.
Frequent blood sampling from males rats was used to study hypothalamic-pituitary-adrenal (HPA) axis activation during arthritis and its association with diminished responses to acute psychological stress. In control rats, corticosterone release occurred in a series of 13 +/- 1 pulses per 24 h. Induction of arthritis by Mycobacterium-adjuvant injection initially increased the rate of hormone release within each pulse and, by day 14 postinjection, when hind-paw inflammation was established, caused a marked increase in pulse frequency to 22 +/- 1 per 24 h leading directly to elevated circulating corticosterone levels. In both control and adjuvant-treated rats, there was a marked response to a 10-min noise stress when the stimulus coincided with a rising or interpulse phase of the endogenous corticosterone rhythm. However, when the noise stress coincided with a falling phase of this rhythm, the response was greatly diminished. Since corticosterone pulse frequency was markedly increased and hence interpulse interval decreased by day 14, there was an increased probability of the noise stress occurring during the nonstress responsive falling phase of the corticosterone secretory cycle. As a result, the group mean response to noise stress was significantly smaller in the arthritic than the controls (70.2 +/- 9.2 versus 107.8 +/- 13.0 ng/ml, respectively). In contrast to the differential response to noise stress, all rats showed similar responses to the acute immunological challenge with i.v. lipopolysaccharide. Thus, altered basal pulse frequency is a major factor influencing HPA activation during acute psychological stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.