Abstract-Homotopic routing asks for a path going around holes according to a given "threading". Paths of different homotopy types can be used to improve load balancing and routing resilience. We propose the first lightweight homotopic routing scheme that generates constant bounded stretch compared to the shortest path of the same homotopy type. Our main insight is that in a sequence of triangles to traverse, a message always routed to the nearest point on the next triangle in the sequence travels at most a constant times the length of any shortest path going through the same sequence of triangles. Our routing scheme operates on two levels enabled by a coarse triangulation. The top level is used to specify and represent the requested homotopy type, while the bottom level executes the local greedy routing on a triangle sequence. After a preprocessing step that triangulates the given region and creates a minimum-size auxiliary structure, routing operates greedily at two different resolutions. We also present simulation analysis in a variety of settings and show that the paths indeed have small stretch in practice, considerably shorter than the bounds guaranteed by the theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.