Transferrin-specific cDNA clones were isolated from a rat liver cDNA library prepared from transferrin-enriched mRNA. Hybrid selection and sequence analysis confirmed that the selected clone contained the carboxy-terminal coding region of the transferrin mRNA. Northern blot analysis was used to demonstrate the presence of transferrin mRNA in liver and Sertoli cells. Transferrin mRNA levels were measured in total RNA isolated from cultured rat Sertoli cells after treatment with FSH, insulin, retinol, and testosterone. The results showed a 2- to 4-fold increase in the level of transferrin mRNA, which peaked on the fourth day of culture after initiation of treatment, with FSH, insulin, retinol, and testosterone. This induction is gene specific, since no change in the mRNA levels for either the catalytic or regulatory subunits of cAMP-dependent protein kinase was observed. The effects of hormones, vitamin A (retinol), and Bu2 cAMP on transferrin mRNA and transferrin secretion (measured by RIA) in cultured Sertoli cells were compared. In general, a direct relationship between the amount of transferrin mRNA present in the cells and the amount of transferrin secreted into the culture medium was observed. These results demonstrate the important role that vitamin A, testosterone, and peptide hormones play in modulating transferrin gene expression in Sertoli cells.
Transferrin is an iron-binding protein that is expressed as a major product in liver and secreted into the plasma. To study the tissue-specific regulatory regions of this gene, the genomic mouse transferrin (mTf) gene was cloned and characterized by partial sequence analysis and Si nuclease mapping of the transcriptional start site. Fusion genes containing the transferrin gene promoter and 5'-flanking sequences were ligated to the human growth hormone (hGH) gene and used to produce transgenic mice. A deletion construct containing the -581 to +50 region of the transferrin gene was sufficient to direct a high level of liver-specific expression resembling endogenous transferrin gene expression. Deletion to -139 base pairs of 5'-flanking sequence gave a construct which retained liver specificity, but the magnitude of expression decreased severalfold. These results demonstrate the presence of a liver-specific transcriptional element between -139 and +50 and suggest the presence of a distal element between -581 and -139 that can further increase expression. Surprisingly, fusion constructs containing -3 kilobase pairs (kb) of 5'-flanking sequence gave higher levels of mRNA in nonhepatic tissues than did either the -581 or -139 construct. Further studies indicated that the high levels of circulating hGH in these transgenic mice specifically induced the endogenous transferrin and albumin genes in liver and also stimulated the normally low levels of expression of the endogenous transferrin gene in brain, heart, kidney, and muscle. A mutated hGH gene that does not produce active growth hormone was fused to the -3-to +50-kb transferrin sequences to produce the -3-kb mTf-hGX construct. A liver-specific pattern of expression was observed in transgenic mice harboring the -3-kb mTf-hGX construct, and this mutated transgene was shown to be induced four-to sevenfold by either bovine or human growth hormone. These results demonstrate the presence of a growth hormone-responsive element between -3 and +50 kb in the 5'-flanking region of the mTf gene promoter.
Mammalian X-chromosome inactivation involves a coordinate shutting down of physically linked genes. Several proposed models require the presence of specific sequences near genes to permit the spread of inactivation into these regions. If such models are correct, one might predict that heterologous genes transferred onto the X chromosome might lack the appropriate signal sequences and therefore escape inactivation. To determine whether a foreign gene inserted into the X chromosome is subject to inactivation, transgenic mice harboring 11 copies of the complete, 17-kilobase chicken transferrin gene on the X chromosome were used. Male mice hemizygous for this insert were bred with females bearing Searle's translocation, an X-chromosome rearrangement that is always active in heterozygous females (the unrearranged X chromosome is inactive). Female offspring bearing the Searle's translocation and the chicken transferrin gene had the same amount of chicken transferrin messenger RNA in liver as did transgenic male mice or transgenic female mice lacking the Searle's chromosome. This result shows that the inserted gene is not subject to X-chromosome inactivation and suggests that the inactivation process cannot spread over 187 kilobases of DNA in the absence of specific signal sequences required for inactivation.
We have analyzed the biochemical defect in a mutant line of mice that produces less than 1% of the normal level of serum transferrin. This mouse line (Hp) transcribes the transferrin gene in liver at the same rate observed in normal mice, but the steady state levels of transferrin mRNA sequences are less than 20% of normal. Further hybridization studies reveal that most of the transferrin mRNA sequences present in homozygous Hp mouse liver are in the form of a 5 kb nuclear precursor instead of the mature 2.5 kb transferrin mRNA seen in normal mice. Using several different exon and intron probes from the mouse transferrin gene, we have shown that the 5 kb RNA precursor retains the last two introns of the transferrin gene but that the 5′ and middle introns have been removed by processing. The defect in transferrin mRNA processing also extends to nonhepatic tissues and we find the same lack of mature mRNA and increased precursor accumulation in brain RNA. Since Southern blot analysis does not reveal gross changes in the structure of the transferrin gene in Hp mice, we suggest that the Hp defect is due to a small deletion or point mutation that either disrupts splicing signals or uncovers cryptic splice signals that interfere with processing of the last two introns in the transferrin gene. This Hp mouse line provides an opportunity to study the effects of transferrin deficiency on development and iron homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.