Increased cell proliferation in the absence of a corresponding increase in apoptosis may explain the heightened risk for gastric carcinoma that is associated with infection by cagA+ vacA s1a strains of H. pylori.
Objective
Helicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease.
Design
Whole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed.
Results
A total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034).
Conclusion
These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.
For Helicobacter pylori, the hsp60 heat shock protein encoded by hspB is being considered as a potential candidate for subunit vaccines. We investigated the humoral and cellular responses to H. pylori hsp60 and its cross-reactivity with the homologous Mycobacterium bovis p65 protein and autologous human hsp60 protein. H. pylori-infected persons had significantly higher levels than uninfected persons of serum immunoglobulin G antibodies recognizing H. pylori hsp60, but not M. bovis p65 or human hsp60, as determined by enzyme-linked immunosorbent assay. In contrast, immunoblotting demonstrated cross-reactivity of H. pylori hsp60 with human hsp60. T-cell recognition of H. pylori hsp60 was found in both infected and uninfected subjects, and there was no recognition of human hsp60. T cells from infected and uninfected subjects that had been activated in response to H. pylori hsp60 or M. bovis p65 were phenotypically similar but appeared to secrete different levels of gamma interferon and interleukin-10. These results demonstrate an apparent difference in the epitopes recognized by the T and B cells responding to H. pylori hsp60 in H. pylori-infected persons. In contrast to the T-cell responses, which were highly variable in all subjects and showed no recognition of autologous proteins, a specific B-cell response that may have cross-reactivity to human hsp60 is evident in some infected subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.