Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publicationGeneral rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policyIf you believe that this document breaches copyright please contact us at:openaccess@tue.nl providing details and we will investigate your claim. In memory of Yuri IngsterThis paper gives a precise characterization of the fundamental limits of adaptive sensing for diverse estimation and testing problems concerning sparse signals. We consider in particular the setting introduced in (IEEE Trans. Inform. Theory 57 (2011) 6222-6235) and show necessary conditions on the minimum signal magnitude for both detection and estimation: if x ∈ R n is a sparse vector with s non-zero components then it can be reliably detected in noise provided the magnitude of the non-zero components exceeds √ 2/s. Furthermore, the signal support can be exactly identified provided the minimum magnitude exceeds √ 2 log s. Notably there is no dependence on n, the extrinsic signal dimension. These results show that the adaptive sensing methodologies proposed previously in the literature are essentially optimal, and cannot be substantially improved. In addition, these results provide further insights on the limits of adaptive compressive sensing.
The scan statistic is by far the most popular method for anomaly detection, being popular in syndromic surveillance, signal and image processing, and target detection based on sensor networks, among other applications. The use of the scan statistics in such settings yields a hypothesis testing procedure, where the null hypothesis corresponds to the absence of anomalous behavior. If the null distribution is known, then calibration of a scan-based test is relatively easy, as it can be done by Monte Carlo simulation. When the null distribution is unknown, it is less straightforward. We investigate two procedures. The first one is a calibration by permutation and the other is a rank-based scan test, which is distribution-free and less sensitive to outliers. Furthermore, the rank scan test requires only a one-time calibration for a given data size making it computationally much more appealing. In both cases, we quantify the performance loss with respect to an oracle scan test that knows the null distribution. We show that using one of these calibration procedures results in only a very small loss of power in the context of a natural exponential family. This includes the classical normal location model, popular in signal processing, and the Poisson model, popular in syndromic surveillance. We perform numerical experiments on simulated data further supporting our theory and also on a real dataset from genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.