Because glucokinase is a metabolic sensor involved in the regulated release of insulin, we have investigated the acute actions of novel glucokinase activator compound 50 (GKA50) on islet function. Insulin secretion was determined by enzyme-linked immunosorbent assay, and microfluorimetry with fura-2 was used to examine We show that GKA50 is a glucose-like activator of -cell metabolism in rodent and human islets and a Ca 2؉ -dependent modulator of insulin secretion.
The properties of ATP-sensitive K+ (K(ATP)) channels were explored in the electrofusion-derived, glucose-responsive, insulin-secreting cell line BRIN-BD11 using patch-clamp techniques. In intact cells, K(ATP) channels were inhibited by glucose, the sulfonylurea tolbutamide, and the imidazoline compounds efaroxan and phentolamine. Each of these agents initiated insulin secretion and potentiated the actions of glucose. K(ATP) channels were blocked by ATP in a concentration-dependent manner and activated by ADP in the presence of ATP. In both intact cells and excised inside-out patches, the K(ATP) channel agonists diazoxide and pinacidil activated channels, and both compounds inhibited insulin secretion evoked by glucose, tolbutamide, and imidazolines. The mechanisms of action of imidazolines were examined in more detail. Pre-exposure of BRIN-BD11 cells to either efaroxan or phentolamine selectively inhibited imidazoline-induced insulin secretion but not the secretory responses of cells to glucose, tolbutamide, or a depolarizing concentration of KCl. These conditions did not result in the loss of depolarization-dependent rises in intracellular Ca2+ ([Ca2+]i), K(ATP) channel operation, or the actions of either ATP or efaroxan on K(ATP) channels. Desensitization of the imidazoline receptor following exposure to high concentrations of efaroxan, however, was found to result in an increase in SUR1 protein expression and, as a consequence, an upregulation of K(ATP) channel density. Our data provide 1) the first characterization of K(ATP) channels in BRIN-BD11 cells, a novel insulin-secreting cell line produced by electrofusion techniques, and 2) a further analysis of the role of imidazolines in the control of insulin release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.