ABSTRACT. Seven radiocarbon laboratories: Åbo/Aarhus, CIRCE, CIRCe, ETHZ, Poznań, RICH, and Milano-Bicocca performed separation of carbonaceous fractions suitable for
Absolute dating of mortars is crucial when trying to pin down construction phases of archaeological sites and historic stone buildings to a certain point in time or to confirm, but possibly also challenge, existing chronologies. To evaluate various sample preparation methods for radiocarbon (14C) dating of mortars as well as to compare different dating methods, i.e. 14C and optically stimulated luminescence (OSL), a mortar dating intercomparison study (MODIS) was set up, exploring existing limits and needs for further research. Four mortar samples were selected and distributed among the participating laboratories: one of which was expected not to present any problem related to the sample preparation methodologies for anthropogenic lime extraction, whereas all others addressed specific known sample preparation issues. Data obtained from the various mortar dating approaches are evaluated relative to the historical framework of the mortar samples and any deviation observed is contextualized to the composition and specific mineralogy of the sampled material.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Highlights Experimental data on varied combinations of units and mortars are presented in detail The varying Poisson's ratio of mortar under compressive loading is investigated and modeled Computationally inexpensive and accurate micro-mechanical models are developed for the numerical reproduction of the experiments The influence of the material properties of mortar on the compressive behavior of masonry is highlighted The wide changes in the apparent vs. prescribed elastic properties of the material components in the masonry composite are shown
The article proposes a methodology for assessing the development of damage in building structures, subjected to differential settlement and uplift, using the analysis of Interferometry Synthetic Aperture Radar (InSAR) data. The proposed methodology is targeted towards general applicability, capable of providing assessment results for measurements over wide geographic areas and for varying structural typologies. The methodology is not limited to ground movement measurements linked to tunnelling, as is the common case. Instead it extends to the monitoring of arbitrary movement in buildings, for example, due to ground consolidation, water table changes or excavation. The methodology is designed for use alongside patrimonial building databases, from which data on individual building geometry and typology are extracted on a region or country scale. Ground movement monitoring data are used for the calculation of the building deformation, expressed in different types of deformation parameters. The combined use of this data with analytical models for settlement damage classification in building structures enables the assessment in patrimonial building structures, at a country scale. The methodology is elaborated and applied on the patrimonial inventory of Belgium for the evaluation of potential settlement and uplift damage on buildings over a period of nearly three decades. The analysis results are compared to on-site observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.