Applications that involve data integration among multiple sources often require a preliminary step of data reconciliation in order to ensure that tuples match correctly across the sources. In dynamic settings such as data mashups, however, traditional offline data reconciliation techniques that require prior availability of the data may not be applicable. The alternative, performing similarity joins at query time, is computationally expensive, while ignoring the mismatch problem altogether leads to an incomplete integration. In this paper we make the assumption that, in some dynamic integration scenarios, users may agree to trade the completeness of a join result in return for a faster computation. We explore the consequences of this assumption by proposing a novel, hybrid join algorithm that involves a combination of exact and approximate join operators, managed using adaptive query processing techniques. The algorithm is optimistic: it can switch between physical join operators multiple times throughout query processing, but it only resorts to approximate join operators when there is statistical evidence that result completeness is compromised. Our experiments show that sensible savings in join execution time can be achieved in practice, at the expense of a modest reduction in result completeness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.