Conducting polymers (CPs) find applications in energy conversion and storage, sensors, and biomedical technologies once processed into thin films. Hydrophobic CPs, like poly(3,4-ethylenedioxythiophene) (PEDOT), typically require surfactant additives, such as poly(styrenesulfonate) (PSS), to aid their aqueous processability as thin films. However, excess PSS diminishes CP electrochemical performance, biocompatibility, and device stability. Here, we report the electrosynthesis of PEDOT thin films at a polarized liquid|liquid interface, a method nonreliant on conductive solid substrates that produces free-standing, additive-free, biocompatible, easily transferrable, and scalable 2D PEDOT thin films of any shape or size in a single step at ambient conditions. Electrochemical control of thin film nucleation and growth at the polarized liquid|liquid interface allows control over the morphology, transitioning from 2D (flat on both sides with a thickness of <50 nm) to “Janus” 3D (with flat and rough sides, each showing distinct physical properties, and a thickness of >850 nm) films. The PEDOT thin films were p -doped (approaching the theoretical limit), showed high π–π conjugation, were processed directly as thin films without insulating PSS and were thus highly conductive without post-processing. This work demonstrates that interfacial electrosynthesis directly produces PEDOT thin films with distinctive molecular architectures inaccessible in bulk solution or at solid electrode–electrolyte interfaces and emergent properties that facilitate technological advances. In this regard, we demonstrate the PEDOT thin film’s superior biocompatibility as scaffolds for cellular growth, opening immediate applications in organic electrochemical transistor (OECT) devices for monitoring cell behavior over extended time periods, bioscaffolds, and medical devices, without needing physiologically unstable and poorly biocompatible PSS.
The versatility of conducting polymers (CPs) facilitates their use in energy conversion and storage, sensor, and biomedical technologies, once processed into thin films. Hydrophobic CPs, like poly(3,4-ethylenedioxythiophene) (PEDOT), typically require the use of surfactant additives, such as poly(styrenesulfonate) (PSS), to aid their aqueous processability as thin films. However, excess PSS diminishes CP electrochemical performance, biocompatibility, and device stability. Here, we report the electrosynthesis of PEDOT thin films at a polarised liquid|liquid interface, a method non-reliant on conductive solid substrates that produces free-standing, additive-free, biocompatible, easily transferrable, and scalable 2D PEDOT thin films of any shape or size in a single-step at ambient conditions. We demonstrate the PEDOT thin film’s superior biocompatibility as scaffolds for cellular growth, opening immediate applications in organic electrochemical transistor (OECT) devices for monitoring cell behaviour over extended time periods, bio-scaffolds and medical devices, without the requirement for physiologically unstable and poorly biocompatible PSS.
This is an Accepted Manuscript for the Microscopy and Microanalysis 2020 Proceedings. This version may be subject to change during the production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.