The use of a modern technological system requires a good engineering approach, optimized operations, and proper maintenance in order to keep the system in an optimal state. Predictive maintenance focuses on the organization of maintenance actions according to the actual health state of the system, aiming at giving a precise indication of when a maintenance intervention will be necessary. Predictive maintenance is normally implemented by means of specialized computational systems that incorporate one of several models to fulfil diagnostics and prognostics tasks. As complexity of technological systems increases over time, single-model approaches hardly fulfil all functions and objectives for predictive maintenance systems. It is increasingly common to find research studies that combine different models in multi-model approaches to overcome complexity of predictive maintenance tasks, considering the advantages and disadvantages of each single model and trying to combine the best of them. These multi-model approaches have not been extensively addressed by previous review studies on predictive maintenance. Besides, many of the possible combinations for multi-model approaches remain unexplored in predictive maintenance applications; this offers a vast field of opportunities when architecting new predictive maintenance systems. This systematic survey aims at presenting the current trends in diagnostics and prognostics giving special attention to multi-model approaches and summarizing the current challenges and research opportunities.
The paper shares an experience in using the Systems Modeling Language (SysML) for the design and formal verification of UAVs. In particular, the paper shows how our approach helps detecting early design errors. A UAV in charge of taking pictures serves as educational and running example throughout the paper. The SysML model of the UAV is simulated and formally verified using the free and open-source tool named TTool. This educational case study gives the authors of the paper an opportunity to draw lessons from teaching SysML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.