In modern warfare scenarios naval ships must operate in coastal environments. These complex environments, in bays and narrow straits, with cluttered littoral backgrounds and many civilian ships may contain asymmetric threats of fast targets, such as rhibs, cabin boats and jet-skis. Optical sensors, in combination with image enhancement and automatic detection, assist an operator to reduce the response time, which is crucial for the protection of the naval and land-based supporting forces. In this paper, we present our work on automatic detection of small surface targets which includes multi-scale horizon detection and robust estimation of the background intensity. To evaluate the performance of our detection technology, data was recorded with both infrared and visual-light cameras in a coastal zone and in a harbor environment. During these trials multiple small targets were used. Results of this evaluation are shown in this paper.
In harbour environments operators should perform tasks as detection and classification. Present-day threats of small objects, as jet skis etc, should be detected, classified and recognized. Furthermore threat intention should be analysed. As harbour environments contain several hiding spaces, due to fixed and floating neutral objects, correct assessment of the threats is complicated when detection tracks are intermittently known. For this purpose we have analysed the capability of our image enhancement and detection technology to assess the performance of the algorithms in a harbour environment. Data were recorded in a warm harbour location. During these trials several small surfaces targets were used, that were equipped with ground truth equipment. In these environments short-range detection is mandatory, followed by immediate classification. Results of image enhancement and detection are shown. An analysis was made into the performance assessment of the detection algorithms.
Recognition and identification ranges are limited to the quality of the images. Both the received contrast and the spatial resolution determine if objects are recognizable. Several aspects affect the image quality. First of all the sensor itself. The image quality depends on the size of the infrared detector array and the sensitivity. Second, also the intervening atmosphere, in particular over longer ranges, has an impact on the image quality. It degrades the contrast, due to transmission effects, as well as it influences the resolution, due to turbulence blur, of the image. We present studies in the field of infrared image enhancement. Several techniques are described: noise reduction, super resolution, turbulence compensation, contrast enhancement, stabilization. These techniques operate in real-time on COTS/MOTS platforms. They are especially effective in the army theatre, where long horizontal paths, and short line-of-sight limited urban operations are both present. Application of these techniques on observation masts, such as on military camp sites, and on UAVs and moving ground vehicles are discussed. Examples will be presented from several trials in which these techniques were demonstrated, including the presentation of test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.