No abstract
Ontologies are at the heart of knowledge management and make use of information that is not only written in English but also in many other natural languages. In order to enable knowledge discovery, sharing and reuse of these multilingual ontologies, it is necessary to support ontology mapping despite natural language barriers. This paper examines the soundness of a generic approach that involves machine translation tools and monolingual ontology matching techniques in cross-lingual ontology mapping scenarios. In particular, experimental results collected from case studies which engage mappings of independent ontologies that are labeled in English and Chinese are presented. Based on findings derived from these studies, limitations of this generic approach are discussed. It is shown with evidence that appropriate translations of conceptual labels in ontologies are of crucial importance when applying monolingual matching techniques in cross-lingual ontology mapping. Finally, to address the identified challenges, a semantic-oriented cross-lingual ontology mapping (SOCOM) framework is proposed and discussed.
Managing privacy and understanding handling of personal data has turned into a fundamental right, at least within the European Union, with the General Data Protection Regulation (GDPR) being enforced since May 25 th 2018. This has led to tools and services that promise compliance to GDPR in terms of consent management and keeping track of personal data being processed. The information recorded within such tools, as well as that for compliance itself, needs to be interoperable to provide sufficient transparency in its usage. Additionally, interoperability is also necessary towards addressing the right to data portability under GDPR as well as creation of user-configurable and manageable privacy policies. We argue that such interoperability can be enabled through agreement over vocabularies using linked data principles. The W3C Data Privacy Vocabulary and Controls Community Group (DPVCG) was set up to jointly develop such vocabularies towards interoperability in the context of data privacy. This paper presents the resulting Data Privacy Vocabulary (DPV), along with a discussion on its potential uses, and an invitation for feedback and participation.
This paper describes a semi-automated process, framework and tools for harvesting, assessing, improving and maintaining high-quality linked-data. The framework, known as DaCura 1 , provides dataset curators, who may not be knowledge engineers, with tools to collect and curate evolving linked data datasets that maintain quality over time. The framework encompasses a novel process, workflow and architecture. A working implementation has been produced and applied firstly to the publication of an existing social-sciences dataset, then to the harvesting and curation of a related dataset from an unstructured data-source. The framework's performance is evaluated using data quality measures that have been developed to measure existing published datasets. An analysis of the framework against these dimensions demonstrates that it addresses a broad range of real-world data quality concerns. Experimental results quantify the impact of the DaCura process and tools on data quality through an assessment framework and methodology which combines automated and human data quality controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.