Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies.
Abstract. Protein kinase C (PKC) plays a central role in the control of proliferation and differentiation of a wide range of cell types by mediating the signal transduction response to hormones and growth factors. Upon activation by diacylglycerol, PKC translocates to different subcellular sites where it phosphorylates numerous proteins, most of which are unidentified. We used the yeast two-hybrid system to identify proteins that interact with activated PKCot. Using the catalytic region of PKC fused to the DNA binding domain of yeast GAL4 as "bait" to screen a mouse T cell cDNA library in which cDNA was fused to the GAL4 activation domain, we cloned several novel proteins that interact with C-kinase (PICKs). One of these proteins, designated PICK1, interacts specifically with the catalytic domain of PKC and is an efficient substrate for phosphorylation by PKC in vitro and in vivo. PICK1 is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK1 and other PICKs may play important roles in mediating the actions of PKC.
The segmental organization of the vertebrate embryo is first apparent when somites form in a rostrocaudal progression from the paraxial mesoderm adjacent to the neural tube. Newly formed somites appear as paired epithelial spheres that become patterned to form vertebrae, ribs, skeletal muscle and dermis. Paraxis is a basic helix-loop-helix transcription factor expressed in paraxial mesoderm and somites. Here we show that in mice homozygous for a paraxis null mutation, cells from the paraxial mesoderm are unable to form epithelia and so somite formation is disrupted. In the absence of normal somites, the axial skeleton and skeletal muscle form but are improperly patterned. Unexpectedly, however, we found that formation of epithelial somites was not required for segmentation of the embryo or for the establishment of somitic cell lineages. These results demonstrate that paraxis regulates somite morphogenesis, and that the function of somites is to pattern the axial skeleton and skeletal muscles.
During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome, and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic helix-loop-helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. Here we report the cloning of a bHLH protein, called paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in its amino and carboxyl termini. During mouse embryogenesis, paraxis transcripts are first detected at about Day 7.5 postcoitum within primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated in the myotome. Paraxis and scleraxis are coexpressed in the sclerotome, but paraxis expression declines soon after sclerotome formation, whereas scleroaxis expression increases in the sclerotome and its derivatives. The sequential expression of paraxis and scleraxis in the paraxial mesoderm and somites suggests that these bHLH proteins may comprise part of a regulatory pathway involved in patterning of the paraxial mesoderm and in the establishment of somitic cell lineages.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.