In this paper, we present a hydrochemical model that can be used to generate plausible karstic conduit networks that honor what is known about geology, hydrology, and topography of a karst system. To make the model applicable to a range of natural karst systems, we introduce a flexible and physically realistic flow boundary condition along the land surface. Moreover, whereas comparable existing speleogenesis models use an explicit reactive‐transport scheme, we propose an implicit reactive‐transport scheme to permit a coarser spatial discretization of the conduit cells. An application to a real karst system illustrates that the model can generate a realistic karstic network that reproduces observed hydrologic behavior in terms of current spring flow rates, regional hydraulic head field as well as average groundwater residence times. Our model provides a useful tool to generate ensembles of possible karstic conduit networks that may be used within a stochastic framework to analyze flow and transport prediction uncertainty associated with a lack of knowledge about network geometry.
Abstract. The common node approach and the dual node approach are two widely applied approaches to coupling surface-subsurface flow. In this study both approaches are analyzed for cell-centered as well as vertex-centered finite difference schemes. It is shown that the dual node approach should be conceptualized and implemented as a one-sided first-order finite difference to approximate the vertical subsurface hydraulic gradient at the land surface. This results in a consistent dual node approach in which the coupling length is related to grid topology. In this coupling approach the coupling length is not to be interpreted as a nonphysical model parameter. Although this particular coupling approach is technically not new, the differences between this consistent dual node approach and the common node approach have not been studied in detail. In fact, this coupling scheme is often believed to be similar to the common node approach. In this study it is illustrated that in comparison to the common node approach, the head continuity at the surface-subsurface interface is formulated more correctly in the consistent dual node approach. Numerical experiments indicate that the consistent dual node approach is less sensitive to the vertical discretization when simulating excess infiltration. It is also found that the consistent dual node approach can be advantageous in terms of numerical efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.