Abstract. Temperature is one of the key parameters controlling lithospheric and mantle dynamics and rheology. Using recent experimental data on elastic parameters and anelasticity, we obtain models of temperature at 50 to 200 km depth beneath Europe from the global P wave velocity model of Bijwaard et al. [ 1998] and the regional S wave velocity model of Marquering and Snieder [1996]. Forward modeling of seismic velocity allows us to assess the sensitivity of velocity to various parameters. In the depth range of interest, variations in temperature (when below the solidus) yield the largest effects. For a 100øC increase in temperature, a decrease of 0.5-2% in Vp and 0.7-4.5% in Vs is predicted, where the strongest decrease is due to the large effect of anelasticity at high temperature. The effect of composition is expected to give velocity anomalies <1% for the shallow mantle and would therefore be difficult to resolve. At depths >80 km the relative amplitudes of the European Vp and Vs anomalies are consistent with a thermal origin. At shallower depths, variations in crustal thickness and possibly the presence of partial melt appear to have an additional effect, mainly on S wave velocity. In regions where both P and S anomalies are well-resolved, Vp-and Vs-derived thermal models agree well with each other and with temperatures determined from surface heat flow observations. Furthermore, the thermal models are consistent with known tectonics. The inferred temperatures vary significantly, from around 400øC below an average mantle adiabat at 100 km depth under the Russian Platform and a 300øC increase from east to west across the Tornquist-Teisseyre zone to temperatures around the mantle adiabat in the depth range 50-200 km under areas with present surface volcanism. In spite of the uncertainties in the calculation of temperatures due to uncertainties in the experimental elastic parameters and anelasticity and uncertainties associated with tomographic imaging, we find that the tomographic models of the shallow mantle under Europe can yield useful estimates of the thermal structure.
[1] We present the first regional surface velocity field for Central America, showing crustal response to interaction of the Cocos and Caribbean plates. Elastic half-space models for interseismic strain accumulation on the dipping subduction plate boundary fit the GPS data well and show strain accumulation offshore and beneath the Nicoya and Osa peninsulas in Costa Rica but not in Nicaragua. Since large subduction zone earthquakes occur in Nicaragua, we suggest that interseismic locking in Nicaragua and some other parts of Central America occurs but is mainly shallow, <20 km depth, too far offshore to be detected by our on-land GPS measurements. Our data also show significant trench-parallel motion for most of the region, generally interpreted as due to oblique convergence and strong mechanical coupling between subducting and overriding plates. However, trench-parallel motion is also observed in central Costa Rica, where plate convergence is normal to the trench, and in the Nicaraguan fore arc, where trench-parallel motion is fast, up to 9 mm a À1 , but mechanical coupling is low. A finite element model of collision (as opposed to subduction) involving the aseismic Cocos Ridge also fits the GPS surface velocity field, most significantly reproducing the pattern of trench-parallel motion. We infer that buoyant, thickened CNS-2-Cocos Ridge crust resists normal subduction and instead acts as an indenter to the Caribbean plate, driving crustal shortening in southern Costa Rica and contributing to trench-parallel fore-arc motion in Costa Rica and perhaps Nicaragua as a type of tectonic escape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.