Summary
1.A great deal of money is being invested in calcareous grassland restoration on arable land within agri-environment schemes in the European Union. There is, however, little evidence that the target ecosystem can be obtained from the restoration techniques and management practices currently used. We evaluated these techniques using a multi-site approach in order to improve the success of future restoration efforts. 2. We compared 40 restoration sites with 40 paired reference sites and addressed the following specific hypotheses: (i) Are plant communities of restoration sites becoming more like those of mature calcareous grassland? (ii) How long does the restoration process take? (iii) Are there any environmental filters that hinder the process? (iv) Is there a difference in plant attributes between restored and ancient grassland communities, and between restored communities of different ages? 3. We used a multivariate approach to assess the similarity of sites and found that there was little overlap between restored and ancient grassland communities even after 60 years. Successful restoration of calcareous grasslands is achievable but the process is slow. 4. Different plant attributes were present at different frequencies in restored and reference sites, and the frequency of some attributes became more like those of reference sites with increasing age of restored site (e.g. perenniality and ruderality). 5. Seeding restoration sites with a low diversity mix appeared detrimental to restoration. Sites that regenerated naturally moved towards the target over time, although success was limited by proximity to ancient grassland vegetation. High soil phosphorus concentration was detrimental to restoration. 6. Synthesis and applications . We recommend selecting restoration sites with low phosphorous concentrations that adjoin patches of ancient calcareous grassland. Seed mixes should be devised carefully to prevent the assembly of low-value, competitive, stable communities dominated by grasses; natural regeneration may avoid this, but will only be effective close to sources of propagules. Other methods of restoration or habitat management would undoubtedly benefit from similar multi-site evaluation.
The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.
Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions.This article is part of the themed issue ‘The interaction of fire and mankind’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.