OBJECTIVETherapeutic footwear for diabetic foot patients aims to reduce the risk of ulceration by relieving mechanical pressure on the foot. However, footwear efficacy is generally not assessed in clinical practice. The purpose of this study was to assess the value of in-shoe plantar pressure analysis to evaluate and optimize the pressure-reducing effects of diabetic therapeutic footwear.RESEARCH DESIGN AND METHODSDynamic in-shoe plantar pressure distribution was measured in 23 neuropathic diabetic foot patients wearing fully customized footwear. Regions of interest (with peak pressure >200 kPa) were selected and targeted for pressure optimization by modifying the shoe or insole. After each of a maximum of three rounds of modifications, the effect on in-shoe plantar pressure was measured. Successful optimization was achieved with a peak pressure reduction of >25% (criterion A) or below an absolute level of 200 kPa (criterion B).RESULTSIn 35 defined regions, mean peak pressure was significantly reduced from 303 (SD 77) to 208 (46) kPa after an average 1.6 rounds of footwear modifications (P < 0.001). This result constitutes a 30.2% pressure relief (range 18–50% across regions). All regions were successfully optimized: 16 according to criterion A, 7 to criterion B, and 12 to criterion A and B. Footwear optimization lasted on average 53 min.CONCLUSIONSThese findings suggest that in-shoe plantar pressure analysis is an effective and efficient tool to evaluate and guide footwear modifications that significantly reduce pressure in the neuropathic diabetic foot. This result provides an objective approach to instantly improve footwear quality, which should reduce the risk for pressure-related plantar foot ulcers.
The offloading capacity of custom-made footwear for high-risk patients can be effectively improved and preserved using in-shoe plantar pressure analysis as guidance tool for footwear modification. This provides a useful approach to obtain better offloading footwear that may reduce the risk for pressure-related diabetic foot ulcers.
Neuropathy may bring about changes in form and function of the foot, which may lead to ulceration and progressive deformity. These manifestations often require specially adapted footwear. A comprehensive concept of the medical, functional, and technical requirements for this type of footwear is still lacking to date. In this article, we present an algorithm that should facilitate prescription and manufacture of adequate shoes. This algorithm attempts to establish a link between the requirements from a medical and functional point of view and the technical possibilities of orthopedic shoe technology. Diabetes Care 24:705-709, 2001T he neuropathic foot is characterized by loss of peripheral nerve function, which can be sensory, motor, autonomic or, usually, a combination of these. This loss of function causes changes in the form and function of the foot and may lead to ulceration and severe deformity, which eventually may result in amputation (1). Therefore, protection of the foot is of the greatest importance. In addition to a careful lifestyle, appropriate footwear is essential for achieving this protection (1,2).In medical literature on the neuropathic foot, much has been written about the prevention of complications. The importance of "good footwear" is stressed, though frequently without further specification (3,4). So far, research has focused only on parts of the problem, mostly pressure reduction (5-8), although in addition to peak pressure, the duration of maximum pressure and shear stress are also important (9 -11). Diabetic footwear has been discussed in descriptive articles (12, 13) and technical studies (8,14). However, the authors confine themselves to specific aspects like pressure distribution and rocker-bottom outsoles (8,14). A comprehensive conceptual approach for the management of the various aspects of this footwear problem is still lacking (15). The rationale behind footwear prescriptions is often unclear to patients and healthcare workers alike, and this can diminish compliance (3,16).The aim of this article is to describe the relationship between medical requirements and technical possibilities. For this purpose, we have developed an algorithm. A number of its components are evidencebased, but most are opinion-based, because testing the effects of therapeutic footwear is impossible without clear guidelines. This algorithm aims at establishing guidelines for clinical treatment and further research into this complex subject. REQUIREMENTS BASED ON MEDICAL FEATURESAltered biomechanics in the foot may lead to ulceration and progressive deformity (17). Here, we will only discuss the different features of a neuropathic foot. Because neuropathy commonly occurs in diabetes, we will also mention one of its consequences, limited joint mobility, which is not directly related to neuropathy (18). Sensory dysfunction Loss of sensory functionIn the long term, reduction of sensory function may lead to complete loss of sensation in the foot. We speak of loss of protective sensation when the patient is not aw...
A new technical system, CAREN (computer assisted rehabilitation environment), is described, which makes it possible to do a total body movement analysis in a virtual environment. The virtual environment is reproducible and as close to natural environment as possible. In a case study it proved possible with this system to test different shoes and get insight in the movement problems. The importance of whole body analysis is demonstrated in this case study. The adjustments made in the shoes could be tested for their efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.