Rising levels of ultraviolet radiation (UVR) secondary to ozone depletion are an issue of concern for public health. Skin cancers and intraepidermal dysplasia are increasingly observed in individuals that undergo chronic or excessive sun exposure. Such alterations of skin integrity and function are well established for humans and laboratory animals, but remain unexplored for mammalian wildlife. However, effects are unlikely to be negligible, particularly for species such as whales, whose anatomical or life-history traits force them to experience continuous sun exposure. We conducted photographic and histological surveys of three seasonally sympatric whale species to investigate sunburn and photoprotection. We find that lesions commonly associated with acute severe sun damage in humans are widespread and that individuals with fewer melanocytes have more lesions and less apoptotic cells. This suggests that the pathways used to limit and resolve UVR-induced damage in humans are shared by whales and that darker pigmentation is advantageous to them. Furthermore, lesions increased significantly in time, as would be expected under increasing UV irradiance. Apoptosis and melanocyte proliferation mirror this trend, suggesting that whales are capable of quick photoprotective responses. We conclude that the thinning ozone layer may pose a risk to the health of whales and other vulnerable wildlife.
Changes in the timing of life history events within the year alter the degree to which the activity patterns of different species coincide, making the dynamics of interspecific interactions sensitive to the phenology of the interacting parties. For parasites, the availability of suitable hosts to infect represents a crucial determinant of dynamics, and changes in the host (and parasite) phenology may thus alter disease epidemiology and the conditions for disease maintenance. We tested the hypothesis that the incidence of a sexually transmitted mite infection, Coccipolipus hippodamiae, in Adalia bipunctata ladybird beetles in Sweden was determined by host phenology, namely presence/absence of sexual contact between cohorts of the host. We observed that the pattern of mite presence/absence across Swedish A. bipunctata populations was highly reproducible between years, implying a persistent biological/ecological basis underlying the incidence. Further, ladybirds from populations where the mite was absent were able to acquire mites during copulation, develop a mite infection, and transmit infection onward, indicating an ecological (rather than biological) driver of mite incidence. Observations of ladybird phenology in natural populations provided evidence of sexual contact between overwintered and new cohort adults in populations where the mite was present. In contrast, new cohort ladybirds in the two northern Swedish populations where the mite was not present had not had sexual contact with the overwintered generation, creating a ‘hard stop’ to mite transmission. We conclude that variation in host phenology may be an important driver of the incidence of sexually transmitted infections (STIs) by determining the presence/absence of sexual contact between generations. More generally, we hypothesize that sensitivity to variation in host phenology will be highest for parasites like STIs that infect one host species, one host life stage and are directly transmitted on contact between host individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.