The peroxisome represents a ubiquitous single membrane-bound key organelle that executes various metabolic pathways such as fatty acid degradation by ␣-and -oxidation, ether-phospholipid biosynthesis, metabolism of reactive oxygen species, and detoxification of glyoxylate in mammals. To fulfil this vast array of metabolic functions, peroxisomes accommodate ϳ50 different enzymes at least as identified until now. Interest in peroxisomes has been fueled by the discovery of a group of genetic diseases in humans, which are caused by either a defect in peroxisome biogenesis or the deficient activity of a distinct peroxisomal enzyme or transporter. Although this research has greatly improved our understanding of peroxisomes and their role in mammalian metabolism, deeper insight into biochemistry and functions of peroxisomes is required to expand our knowledge of this low abundance but vital organelle. In this work, we used classical subcellular fractionation in combination with MS-based proteomics methodologies to characterize the proteome of mouse kidney peroxisomes. We could identify virtually all known components involved in peroxisomal metabolism and biogenesis. Moreover through protein localization studies by using a quantitative MS screen combined with statistical analyses, we identified 15 new peroxisomal candidates. Of these, we further investigated five candidates by immunocytochemistry, which confirmed their localization in peroxisomes. As a result of this joint effort, we believe to have compiled the so far most comprehensive protein catalogue of mammalian peroxisomes.
X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). X-ALD is characterized by the accumulation of very long-chain fatty acids (VLCFA; ≥C24) in plasma and tissues. In this manuscript we provide insight into the pathway underlying the elevated levels of C26:0 in X-ALD. ALDP transports VLCFacyl-CoA across the peroxisomal membrane. A deficiency in ALDP impairs peroxisomal β-oxidation of VLCFA but also raises cytosolic levels of VLCFacyl-CoA which are substrate for further elongation. We identify ELOVL1 (elongation of very-long-chain-fatty acids) as the single elongase catalysing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1). ELOVL1 expression is not increased in X-ALD fibroblasts suggesting that increased levels of C26:0 result from increased substrate availability due to the primary deficiency in ALDP. Importantly, ELOVL1 knockdown reduces elongation of C22:0 to C26:0 and lowers C26:0 levels in X-ALD fibroblasts. Given the likely pathogenic effects of high C26:0 levels, our findings highlight the potential of modulating ELOVL1 activity in the treatment of X-ALD.
Refsum disease is an autosomal-recessively inherited disorder characterized clinically by a tetrad of abnormalities: retinitis pigmentosa, peripheral neuropathy, cerebellar ataxia and elevated protein levels in the cerebrospinal fluid (CSF) without an increase in the number of cells in the CSF. All patients exhibit accumulation of an unusual branched-chain fatty acid, phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), in blood and tissues. Biochemically, the disease is caused by the deficiency of phytanoyl-CoA hydroxylase (PhyH), a peroxisomal protein catalyzing the first step in the alpha-oxidation of phytanic acid. We have purified PhyH from rat-liver peroxisomes and determined the N-terminal amino-acid sequence, as well as an additional internal amino-acid sequence obtained after Lys-C digestion of the purified protein. A search of the EST database with these partial amino-acid sequences led to the identification of the full-length human cDNA sequence encoding PhyH: the open reading frame encodes a 41.2-kD protein of 338 amino acids, which contains a cleavable peroxisomal targeting signal type 2 (PTS2). Sequence analysis of PHYH fibroblast cDNA from five patients with Refsum disease revealed distinct mutations, including a one-nucleotide deletion, a 111-nucleotide deletion and a point mutation. This analysis confirms our finding that Refsum disease is caused by a deficiency of PhyH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.