We introduce Salmon, a method for quantifying transcript abundance from RNA-seq reads that is accurate and fast. Salmon is the first transcriptome-wide quantifier to correct for fragment GC content bias, which we demonstrate substantially improves the accuracy of abundance estimates and the reliability of subsequent differential expression analysis. Salmon combines a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure.
We introduce Sailfish, a computational method for quantifying the abundance of previously annotated RNA isoforms from RNA-seq data. Because Sailfish entirely avoids mapping reads, a time-consuming step in all current methods, it provides quantification estimates much faster than do existing approaches (typically 20 times faster) without loss of accuracy. By facilitating frequent reanalysis of data and reducing the need to optimize parameters, Sailfish exemplifies the potential of lightweight algorithms for efficiently processing sequencing reads.
TransRate is a tool for reference-free quality assessment of de novo transcriptome assemblies. Using only the sequenced reads and the assembly as input, we show that multiple common artifacts of de novo transcriptome assembly can be readily detected. These include chimeras, structural errors, incomplete assembly, and base errors. TransRate evaluates these errors to produce a diagnostic quality score for each contig, and these contig scores are integrated to evaluate whole assemblies. Thus, TransRate can be used for de novo assembly filtering and optimization as well as comparison of assemblies generated using different methods from the same input reads. Applying the method to a data set of 155 published de novo transcriptome assemblies, we deconstruct the contribution that assembly method, read length, read quantity, and read quality make to the accuracy of de novo transcriptome assemblies and reveal that variance in the quality of the input data explains 43% of the variance in the quality of published de novo transcriptome assemblies. Because TransRate is reference-free, it is suitable for assessment of assemblies of all types of RNA, including assemblies of long noncoding RNA, rRNA, mRNA, and mixed RNA samples.
Chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized topological domains that are similar across cell types and conserved across species. These domains are strongly correlated with a number of chromatin markers and have since been included in a number of analyses. However, functionally-relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is able to capture persistent domains across various resolutions by adjusting a single scale parameter. The ensemble of domains we identify allows us to quantify the degree to which the domain structure is hierarchical as opposed to overlapping, and our analysis reveals a pronounced hierarchical structure in which larger stable domains tend to completely contain smaller domains. The identified novel domains are substantially different from domains reported previously and are highly enriched for insulating factor CTCF binding and histone marks at the boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.