Disturbances that result in the mass mortality of reef-building corals are changing the appearance of reefs worldwide. Many reefs are transitioning away from scleractinian-coraldominated assemblages to benthic communities composed primarily of non-scleractinian taxa. This study evaluated recovery patterns of reef communities in the Florida Keys following the mortality associated with the 1997/1998 El Niño. We examined temporal trends among the 5 most spatially abundant reef taxa and stony coral species from 1999 to 2009 at 3 spatial scales, and applied a Principal Coordinate Analysis (PCoA) to determine whether changes in their cover resulted in a shift in community structure. Trends of decreasing stony coral cover were not identified Keys-wide between 1999 and 2009, but 2 of the 3 habitats examined -shallow and deep forereefs -did show a significant decline in cover. Concomitantly, octocoral cover significantly increased Keys-wide and in all 3 habitats. The transition to octocorals was most evident on shallow forereefs, where octocoral cover significantly increased at 9 of 12 reefs and overwhelmingly influenced the PCoA. On deep forereefs, octocoral and sponge cover did significantly increase, but did not impart a clearly defined shift in community structure like that observed on shallow forereefs. Community composition at patch reefs was relatively consistent during the study, but the increase in octocoral cover may accelerate further following a cold-water mortality event in 2010. These results demonstrate that octocorals are emerging as the predominant benthic taxa in the Florida Keys. Although the transition to octocorals may have started long ago, their apparent resilience to present-day stressors will likely allow this shift to continue into the foreseeable future.
In 2014, Stony Coral Tissue Loss Disease (SCTLD) was first detected off the coast of Miami, FL, United States, and continues to persist and spread along the Florida Reef Tractr (FRT) and into the Caribbean. SCTLD can have up to a 61% prevalence in reefs and has affected at least 23 species of scleractinian corals. This has contributed to the regional near-extinction of at least one coral species, Dendrogyra cylindrus. Initial studies of SCTLD indicate microbial community shifts and cessation of lesion progression in response to antibiotics on some colonies. However, the etiology and abiotic sources of SCTLD transmission are unknown. To characterize SCTLD microbial signatures, we collected tissue samples from four affected coral species: Stephanocoenia intersepta, Diploria labyrinthiformis, Dichocoenia stokesii, and Meandrina meandrites. Tissue samples were from apparently healthy (AH) corals, and unaffected tissue (DU) and lesion tissue (DL) on diseased corals. Samples were collected in June 2018 from three zones: (1) vulnerable (ahead of the SCTLD disease boundary in the Lower Florida Keys), (2) endemic (post-outbreak in the Upper Florida Keys), and (3) epidemic (SCTLD was active and prevalent in the Middle Florida Keys). From each zone, sediment and water samples were also collected to identify whether they may serve as potential sources of transmission for SCTLD-associated microbes. We used 16S rRNA gene amplicon highthroughput sequencing methods to characterize the microbiomes of the coral, water, and sediment samples. We identified a relatively higher abundance of the bacteria orders Rhodobacterales and Rhizobiales in DL tissue compared to AH and DU tissue. Also, our results showed relatively higher abundances of Rhodobacterales in water from the endemic and epidemic zones compared to the vulnerable zone. Rhodobacterales and Rhizobiales identified at higher relative abundances in DL samples were also detected in sediment samples, but not in water samples. Our data indicate that Rhodobacterales and Rhizobiales may play a role in SCTLD and that sediment may be a source of transmission for Rhodobacterales and Rhizobiales associated with SCTLD lesions.
BackgroundCoral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity.Methodology/Principal FindingsReef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly. The impacts recorded were catastrophic and exceeded those of any previous disturbances in the region. Coral mortality patterns were directly correlated to in-situ and satellite-derived cold-temperature metrics. These impacts rival, in spatial extent and intensity, the impacts of the well-publicized warm-water bleaching events around the globe. The mean percent coral mortality recorded for all species and subregions was 11.5% in the 2010 winter, compared to 0.5% recorded in the previous five summers, including years like 2005 where warm-water bleaching was prevalent. Highest mean mortality (15%–39%) was documented for inshore habitats where temperatures were <11°C for prolonged periods. Increases in mortality from previous years were significant for 21 of 25 coral species, and were 1–2 orders of magnitude higher for most species.Conclusions/SignificanceThe cold-water anomaly of January 2010 caused the worst coral mortality on record for the Florida Reef Tract, highlighting the potential catastrophic impacts that unusual but extreme climatic events can have on the persistence of coral reefs. Moreover, habitats and species most severely affected were those found in high-coral cover, inshore, shallow reef habitats previously considered the “oases” of the region, having escaped declining patterns observed for more offshore habitats. Thus, the 2010 cold-water anomaly not only caused widespread coral mortality but also reversed prior resistance and resilience patterns that will take decades to recover.
Over the last half century, climate change, coral disease, and other anthropogenic disturbances have restructured coral‐reef ecosystems on a global scale. The disproportionate loss of once‐dominant, reef‐building taxa has facilitated relative increases in the abundance of “weedy” or stress‐tolerant coral species. Although the recent transformation of coral‐reef assemblages is unprecedented on ecological timescales, determining whether modern coral reefs have truly reached a novel ecosystem state requires evaluating the dynamics of reef composition over much longer periods of time. Here, we provide a geologic perspective on the shifting composition of Florida's reefs by reconstructing the millennial‐scale spatial and temporal variability in reef assemblages using 59 Holocene reef cores collected throughout the Florida Keys Reef Tract (FKRT). We then compare the relative abundances of reef‐building species in the Holocene reef framework to data from contemporary reef surveys to determine how much Florida's modern reef assemblages have diverged from long‐term baselines. We show that the composition of Florida's reefs was, until recently, remarkably stable over the last 8000 yr. The same corals that have dominated shallow‐water reefs throughout the western Atlantic for hundreds of thousands of years, Acropora palmata, Orbicella spp., and other massive coral taxa, accounted for nearly 90% of Florida's Holocene reef framework. In contrast, the species that now have the highest relative abundances on the FKRT, primarily Porites astreoides and Siderastrea siderea, were rare in the reef framework, suggesting that recent shifts in species assemblages are unprecedented over millennial timescales. Although it may not be possible to return coral reefs to pre‐Anthropocene states, our results suggest that coral‐reef management focused on the conservation and restoration of the reef‐building species of the past, will optimize efforts to preserve coral reefs, and the valuable ecosystem services they provide into the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.