Pleckstrin homology (PH) domains may act as membrane localization modules through specific interactions with phosphoinositide phospholipids. These interactions could represent responses to second messengers, with scope for regulation by soluble inositol polyphosphates. A biosensor‐based assay was used here to probe interactions between PH domains and unilamellar liposomes containing different phospholipids and to demonstrate specificity for distinct phosphoinositides. The dynamin PH domain specifically interacted with liposomes containing phosphatidylinositol‐4,5‐bisphosphate [PI(4,5)P2] and, more weakly, with liposomes containing phosphatidylinositol‐4‐phosphate [PI(4)P]. This correlates with phosphoinositide activation of the dynamin GTPase. The functional GTPase of a dynamin mutant lacking the PH domain, however, cannot be activated by PI(4,5)P2. The phosphoinositide‐PH domain interaction can be abolished selectively by point mutations in the putative binding pocket predicted by molecular modelling and NMR spectroscopy. In contrast, the Bruton's tyrosine kinase (Btk)PH domain specifically bound liposomes containing phosphatidylinositol‐3,4,5‐trisphosphate [PI(3,4,5)P3]: an interaction requiring Arg28, a residue found to be mutated in some X‐linked agammaglobulinaemia patients. A rational explanation for these different specificities is proposed through modelling of candidate binding pockets and is supported by NMR spectroscopy.
Fyn is a prototype Src-family tyrosine kinase that plays specific roles in neural development, keratinocyte differentiation, and lymphocyte activation, as well as roles redundant with other Src-family kinases. Similar to other Src-family kinases, efficient regulation of Fyn is achieved through intramolecular binding of its SH3 and SH2 domains to conserved regulatory regions. We have investigated the possibility that the tyrosine kinase regulatory protein Cbl provides a complementary mechanism of Fyn regulation. We show that Cbl overexpression in 293T embryonic kidney and Jurkat T-lymphocyte cells led to a dramatic reduction in the active pool of Fyn; this was seen as a reduction in Fyn autophosphorylation, reduced phosphorylation of in vivo substrates, and inhibition of transcription from a Src-family kinase response element linked to a luciferase reporter. Importantly, a Fyn mutant (FynY528F) relieved of intramolecular repression was still negatively regulated by Cbl. The Cbl-dependent negative regulation of Fyn did not appear to be mediated by inhibition of Fyn kinase activity but was correlated with enhanced protein turnover. Consistent with such a mechanism, elevated levels of Fyn protein were observed in cell lines derived from Cbl ؊/؊ mice compared to those in wild-type controls. The effects of Cbl on Fyn were not observed when the 70ZCbl mutant protein was analyzed. Taken together, these observations implicate Cbl as a component in the negative regulation of Fyn and potentially other Src-family kinases, especially following kinase activation. These results also suggest that protein degradation may be a general mechanism for Cbl-mediated negative regulation of activated tyrosine kinases.
Abstract. We have purified a 100-kD rat brain protein that has microtubule cross-linking activity in vitro, and have determined that it is dynamin, a putative microtubule-associated motility protein. We find that dynamin appears to be specific to neuronal tissue where it is present in both soluble and particulate tissue fractions. In the cytosol it is abundant, representing as much as 1.5 % of the total extractable protein. Dynamin appears to be in particulate material due to association with a distinct subcellular membrane fraction. Surprisingly, by immunofluorescence analysis of PC12 cells we find that dynamin is distributed uniformly throughout the cytoplasm with no apparent microtubule association in either interphase, mitotic, or taxol-treated cells. Upon nerve growth factor (NGF) induction of PC12 cell differentiation into neurons, dynamin levels increase approximately twofold. In the cell body, the distribution of dynamin again remains clearly distinct from that of tubulin, and in axons, where microtubules are numerous and ordered into bundles, dynamin staining is sparse and punctate. On the other hand, in the most distal domain of growth cones, where there are relatively few microtubules, dynarnin is particularly abundant. The dynamin staining of neurites is abolished by extraction of the cells with detergent under conditions that preserve microtubules, suggesting that dynarnin in neurites is associated with membranes. We conclude that dynamin is a neuronal protein that is specifically associated with as yet unidentified vesicles. It is possible, but unproven, that it may link vesicles to microtubules for transport in differentiated axons.
Dynamin, a 100 kDa GTPase, is critical for endocytosis, synaptic transmission and neurogenesis. Endocytosis accompanies receptor processing and plays an essential role in attenuating receptor tyrosine kinase signal transduction. Dynamin has been demonstrated to be involved in the endocytic processing at the cell surface and may play a general role in coupling receptor activation to endocytosis. Src homology (SH) domain dependent protein‐protein interactions are important to tyrosine kinase receptor signal transduction. The C‐terminus of dynamin contains two clusters of SH3 domain binding proline motifs; these motifs may interact with known SH3 domain proteins during tyrosine kinase receptor activation. We demonstrate here that SH3 domain‐containing signal transduction proteins, such as phospholipase C gamma‐1 (PLC gamma‐1), do indeed bind to dynamin in a growth factor inducible manner. The induction of PLC gamma‐1 binding to dynamin occurs within minutes of the addition of platelet derived growth factor (PDGF) to cells. Binding of these signal transduction proteins to dynamin involves specific sorting to individual proline motif clusters and appears to be responsible for co‐immunoprecipitation of tyrosine phosphorylated PDGF receptors with dynamin following PDGF stimulation of mammalian cells. The binding of dynamin to SH3 domain‐containing proteins may therefore be important for formation of the protein complex required for the endocytic processing of activated tyrosine kinase receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.