The effect of the appearance of drug-resistant human immunodeficiency virus type 1 (HIV-1) on viral RNA load was studied in patients treated with the reverse transcriptase inhibitor lamivudine. During the first 12 weeks of treatment, HIV-1 RNA concentrations and amino acid changes in codon 184, causing high-level resistance to lamivudine, were determined in longitudinal serum samples from HIV-1 p24 antigen-positive and -negative patients. A marked decline in the amount of HIV-1 RNA (approximately 95% below baseline) and HIV-1 p24 antigen was observed within 2 weeks, followed by a rise that coincided with the appearance of lamivudine-resistant viruses in serum (isoleucine mutants initially, which were subsequently replaced by valine variants). After 12 weeks, a partial antiviral effect was observed despite the presence of a complete codon 184 mutant virus population in serum. This study shows that the rapid appearance of drug-resistant virus in serum is followed by an increase in viral RNA load.
Since influenza viruses can cause severe illness, timely diagnosis is important for an adequate intervention. The available rapid detection methods either lack sensitivity or require complex laboratory manipulation. This study describes a rapid, sensitive detection method that can be easily applied to routine diagnosis. This method simultaneously detects influenza viruses A and B in specimens of patients with respiratory infections using a TaqMan-based real-time PCR assay. Primers and probes were selected from highly conserved regions of the matrix protein gene of influenza virus A and the hemagglutinin gene segment of influenza virus B. The applicability of this multiplex PCR was evaluated with 27 influenza virus A and 9 influenza virus B reference strains and isolates. In addition, the specificity of the assay was assessed using eight reference strains of other respiratory viruses (parainfluenza viruses 1 to 3, respiratory syncytial virus Long strain, rhinoviruses 1A and 14, and coronaviruses OC43 and 229E) and 30 combined nose and throat swabs from asymptomatic subjects. Electron microscopy-counted stocks of influenza viruses A and B were used to develop a quantitative PCR format. Thirteen copies of viral RNA were detected for influenza virus A, and 11 copies were detected for influenza virus B, equaling 0.02 and 0.006 50% tissue culture infective doses, respectively. The diagnostic efficacy of the multiplex TaqMan-based PCR was determined by testing 98 clinical samples. This real-time PCR technique was found to be more sensitive than the combination of conventional viral culturing and shell vial culturing.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 104 CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.