Currently applied fisheries models and stock assessments rely on the assumption that density-dependent regulation only affects processes early in life, as described by stock–recruitment relationships. However, many fish stocks also experience density-dependent processes late in life, such as density-dependent adult growth. Theoretical studies have found that, for stocks which experience strong late-in-life density dependence, maximum sustainable yield (MSY) is obtained with a small fishery size-at-entry that also targets juveniles. This goes against common fisheries advice, which dictates that primarily adults should be fished. This study aims to examine whether the strength of density-dependent growth in actual fish stocks is sufficiently strong to reduce optimal fishery size-at-entry to below size-at-maturity. A size-structured model is fitted to three stocks that have shown indications of late-in-life density-dependent growth: North Sea plaice (Pleuronectes platessa), Northeast Atlantic (NEA) mackerel (Scomber scombrus), and Baltic sprat (Sprattus sprattus balticus). For all stocks, the model predicts exploitation at MSY with a large size-at-entry into the fishery, indicating that late-in-life density dependence in fish stocks is generally not strong enough to warrant the targeting of juveniles. This result lends credibility to the practise of predominantly targeting adults in spite of the presence of late-in-life density-dependent growth.
During the 20th century, many large-bodied fish stocks suffered from unsustainable fishing pressure. Now, signs of recovery are appearing among previously overfished large-bodied fish stocks. This new situation raises the question of whether current fisheries advice and management procedures, which were devised and optimized for depleted stocks, are well-suited for the management of recovered stocks. We highlight two challenges for fisheries advice and management: First, recovered stocks are more likely to show density-dependent growth. We show how the appearance of density-dependent growth will make reference points calculated with current procedures inaccurate. Optimal exploitation of recovered large-bodied fish stocks will therefore require accounting for density-dependent growth. Second, we show how a biomass increase of large-bodied piscivorous fish will lead to a reverse trophic cascade, where their increased predation mortality on forage fish reduces forage fish productivity and abundance. The resulting decrease in maximum sustainable yield of forage fish stocks could lead to conflicts between forage and large-piscivore fisheries. Avoiding such conflicts requires that choices are made between the exploitation of interacting fish stocks. Failure to account for the changed ecological state of recovered stocks risks creating new obstacles to sustainable fisheries management.
The management of mixed-use fisheries, that is fisheries that are co-exploited by commercial and recreational fishers, poses many challenges. For instance, commercial and recreational fisheries often have different management objectives (Ahrens et al., 2020;Arlinghaus et al., 2019), and the differences in goals and behaviours increase with the diversity of stakeholders (Mardle et al., 2004;Pascoe et al., 2009). The sustainable management of mixed-use fisheries requires monitoring and managing both its commercial and recreational components, because the combined action of both sectors is responsible for the total fishing mortality induced on a stock
A new approach for estimating the fishing mortality benchmark Fmsy (fishing pressure that corresponds to maximum sustainable yield) is proposed. The approach includes density-dependent factors. The analysis considers 53 data-rich fish stocks in the Northeast Atlantic. The new Fmsy values are estimated from an ensemble of data sources: (i) applying traditional surplus production models on time-series of historic stock sizes, fishing mortalities, and catches from the current annual assessments; (ii) dynamic pool model (e.g. age-structured models) estimation for stocks where data on density-dependent growth, maturity, and mortality are available; (iii) extracts from multispecies and ecosystem literature for stocks where well-tested estimates are available; (iv) the “Great Experiment” where fishing pressure on the demersal stocks in the Northeast Atlantic slowly increased for half a century; and (v) linking Fmsy to life history parameters. The new Fmsy values are substantially higher (average equal to 0.38 year−1) than the current Fmsy values (average equal to 0.26 year−1) estimated in stock assessments and used by management, similar to the fishing pressure in the 1960s, and about 30% lower than the fishing pressure in 1970–2000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.