The Tutte polynomial is an isomorphism invariant of graphs that generalizes the chromatic and the flow polynomials. This two-variable polynomial with integral coefficients is known to carry important information about the properties of the graph. It has been used to prove long-standing conjectures in knot theory. Furthermore, it is related to the Potts and Ising models in statistical physics. The purpose of this paper is to study the interaction between the Tutte polynomial and graph symmetries. More precisely, we prove that if the automorphism group of the graph G contains an element of prime order p, then the coefficients of the Tutte polynomial of G satisfy certain necessary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.