The effects of geometrical constraints on the fracture initiation location and the fracture strength are evaluated in U‐notched specimens using theoretical and experimental analyses. It is proven that high geometrical constraints in pure mode I loading of geometrically symmetric U‐notched specimens can result in occurrence of the maximum tangential stress (MTS) at two symmetric points on both sides of the notch bisector line. The experiments also indicated that the fracture takes place from a direction that is not along the notch bisector line. The experimental results are then examined theoretically through a stress‐based brittle fracture criterion. Because the conventional MTS criterion was poor to predict the onset of fracture properly, an attempt is made to use the generalized MTS (GMTS) criterion by considering the higher order terms in the fracture model. It is shown that the GMTS criterion gives very good predictions for experimentally obtained values of crack initiation angle and notch fracture resistance.
This paper gathers experimental and theoretical investigations about both the geometry-dependent fracture initiation angle and the fracture strength in VO-notched polymethyl methacrylate (PMMA) specimens under mode I loading conditions. The numerical analyses revealed that despite the application of pure mode I loading on the geometrically symmetric VO-notched samples, the maximum tangential stress occurs at two points symmetrically placed on either side of the notch bisector line. The experimental tests performed on some specimens showed that a crack does not necessarily propagate along the notch bisector line. Stress-based theoretical studies were then carried out to justify the experimental findings. The conventional maximum tangential stress (MTS) criterion gave weak predictions of the fracture. Therefore, the predictions were checked with the generalized MTS (GMTS) criterion by taking into consideration the higher-order stress terms. It was demonstrated that the GMTS criterion predictions have satisfactory consistency with the experimental results of the crack initiation angle and the fracture strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.